• 제목/요약/키워드: 영상 정합점

검색결과 457건 처리시간 0.022초

일반화 대칭변환을 이용한 스테레오스코픽 영상 매칭점 검색 (Stereoscopic matching using the generalized symmetry transform)

  • 기명석;김규헌
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.755-758
    • /
    • 2002
  • 스테레오스코픽 영상은 스테레오스코픽 카메라를 이용하여 좌 영상(left image)과 우 영상(right image)을 동시에 획득하는 것으로 사람의 눈으로 보는 것과 같은 입체감을 얻을 수 있는 것을 특징으로 한다. 스테레오스코픽 영상에서 객체의 깊이값을 구하기 위해서는 영상의 정합점을 찾는 것이 중요한데, 본 논문에서는 일반화 대칭변환(generalized symmetry transform) 알고리즘을 적용하여 스테레오스코픽(stereoscopic) 영상의 정합점(correspond points)을 찾는 방법을 제안한다. 본 논문에서 제안하는 방법은 먼저 좌 영상과 우 영상에 대해 에지(edge), 코너 검출 방법을 통해 특징점(feature point)을 검출하고 각 특징점들을 중심으로 사각 영역을 설정하고 이 범위내의 에지들이 갖는 대칭도(symmetry magnitude)를 특징점의 위치에 누적 시킨다. 좌영상의 대칭도를 구한 결과를 우 영상의 에지들의 대칭도와 비교를 수행해 임계치(threshold) 이하의 값을 가진 점들을 정합 후보로 선택한다. 이 정합 후보들을 영역내의 반지름 단위의 대칭도 비교를 통해 더욱 세분화된 비교를 수행하고 만약 이와 같은 과정을 통해서도 정합점을 찾지 못한다면 정합 후보들에 대해 칼라 정합도를 측정하여 최종적으로 정합점을 검출한다. 제안한 알고리즘을 이용한다면 특징점만을 이용하여 검색을 수행했을 때보다 더욱 정확한 정합점을 구할 수 있다.

  • PDF

딥러닝 기반 특징점 필터링을 이용한 원격 탐사 영상 정합 고속화 연구 (A study high speed remote sensing image registration using deep learning-based keypoints filtering)

  • 이우주;심동규;오승준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.97-99
    • /
    • 2021
  • 본 논문에서는 딥러닝 기반 특징점 필터링 방법을 이용한 원격 탐사 영상에 대한 영상 정합 (Image Registration) 고속화 방법을 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 인공구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 인공구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. 딥러닝 기반 특징점 필터링은 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 인공구조물의 경계와 인접한 특징점을 보존하고, 축소한 영상을 사용하며, 영상 분할(Image Segmentation) 방법의 결과에서 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라 냄으로써 정합 속도와 정확도를 향상시킨다. 영상 정합 고속화 방법을 의 성능을 검증하기 위하여 아리랑 3 호 위성 원격 탐사 영상을 사용하여 기존 특징점 추출 방법과 속도와 정확도를 비교하였다. 딥러닝 기반 영상 정합 방법을 기준으로 하여 비교하였을 때 특징점의 수를 약 82% 감소시키면서 속도를 약 9.17 배 향상시켰지만 정확도가 0.985 에서 0.855 으로 저하되었다.

  • PDF

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Features)

  • 백재원;박순용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1000-1005
    • /
    • 2007
  • 본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.

  • PDF

영상정보를 이용한 3차원 정보의 정합 (3D Range Data Registration Using Corresponding Image)

  • 하승태;한준희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.595-597
    • /
    • 2000
  • 3차원 정보의 올바른 정합을 위해서 3차원 정보 자신 뿐만이 아니라 3차원 정보와 연관된 영상 정보를 이용한다. 먼저 영상의 정합을 수행함에 있어 서로 다른 두 영상간에 상관 윈도우를 씌워 상관계수를 계산하여 최적 정합점을 탐색한다. 본 논문에서는 카메라의 서로 다른 관점으로 인한 상관위도우의 뒤틀림을 3차원 초기 변환 행렬을 이용하여 보정하는 방법을 제안하고, 이에 의해 3차원 변환된 상관 윈도우를 정합에 이용함으로서 상관계수의 정확도를 급격히 향상시킨다. 그 결과로 개선된 특징점 정합 결과로부터 영상 전반에 걸친 3차원 특징점 정합을 통해 이와 대응하는 3차원 정보의 정확한 정합 결과를 얻는다.

  • PDF

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking)

  • 백재원;문재경;박순용
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.493-502
    • /
    • 2007
  • 본 논문에서는 물체의 3차원 모델을 복원하기 위하여 거리영상 카메라에서 획득한 다시점 3차원 거리영상을 온라인으로 정합(registration)하는 기술을 제안한다. 3차원 모델 복원을 위하여 거리영상 카메라를 복원하고자하는 물체 주위로 이동하여 연속된 다시점 거리영상과 사진영상을 획득하고 물체와 배경을 분리한다. 분리된 다시점 거리영상의 정합을 위하여 이미 등록된 거리영상의 변환정보 그리고 두 거리영상 사이의 기하정보를 이용하여 정합을 초기화한다. 위 과정을 통해 서로 인접한 거리영상에서 영상 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반(projection-based) 정합을 실시한다. 기하정합이 완료되면 사진영상 간의 대응점을 추적하여 정합을 정제(refinement)하는 과정을 거치는데 KLT (Kanade-Lucas-Tomasi) 추적기를 수정하여 대응점 탐색의 속도와 성공률을 증가시켰다. 영상 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상을 정제하였다. 정합과 정제의 결과를 통해 추정된 변환 행렬과 정합된 대응점들 사이의 거리를 계산하여 정합 결과를 검증하고 거리영상의 사용 여부를 결정한다. 만약 정합이 실패하더라도 경우에도 거리영상을 실시간으로 계속 획득하고 정합을 다시 시도한다. 위와 같은 과정을 반복하여 충분한 거리 영상을 획득하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 실험 결과들을 통해 제안한 방법이 3차원 모델을 성공적으로 복원할 수 있음을 확인 할 수 있었고 오차 분석을 통해 모델 복원의 정확도를 검증하였다.

구름이 존재하는 아리랑 2호 영상의 영상정합 방법 (Image Registration Method for KOMPSAT-2 clouds imagery)

  • 김태영;최명진
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2009
  • 고해상도 컬러 위성 영상 촬영을 위한 다중분광 센서를 탑재한 위성의 영상은, 탑재체에 장착된 센서의 위치에 따라, 동일 지역에 대해 센서 간의 촬영시각의 차이가 발생한다. 만약 이동하는 구름이 촬영될 경우, 센서별 촬영 영상간에는 구름과 지상과의 상대적 위치가 달라진다. 고해상도 컬러 위성 영상을 생성하기 위해, 영상 정합(image registration) 기법이 사용되는 데, 일반적인 영상 정합 알고리즘은 촬영 영상에서의 특징점(feature point)이 움직이지 않는 것을 전제로 수행한다. 그 결과 이동하는 구름 경계부에서 정합점(matching point)이 추출될 경우, 지상 영역에서의 정합품질이 좋지 않다. 따라서, 본 연구에서는 구름 경계부에서 정합점이 추출되지 않는 알고리즘을 제안하였다. 실험 영상으로 구름이 존재하는 아리랑2호 영상을 사용하였고, 제안된 영상 정합 알고리즘은 지상 영역에서의 정합 품질이 높였음을 보였다.

  • PDF

MOC-NA 영상의 영역기준 영상정합 (Area based image matching with MOC-NA imagery)

  • 윤준희;박정환
    • 한국측량학회지
    • /
    • 제28권4호
    • /
    • pp.463-469
    • /
    • 2010
  • 화성의 고도정보를 제공하는 MOLA 센서는 화성전역에 대한 데이터를 제공하지 못하므로, 수치표고모형을 만들기 위해서는 MOC-NA영상을 이용한 영상정합이 수행되어야만 한다. 그러나 특색(feature)이 적고 명암대비가 낮은 화성영상의 특성상, 자동 영상정합은 어려운 실정이다. 본 논문은 MOC-NA 영상에 대하여 영역기준 영상정합에 기반한 반 자동 영상정합의 알고리즘을 다룬다. 공액점을 나타내는 시드(seed)포인트 들이 수동으로 스테레오 영상에 추가되고 이를 바탕으로 특징점들이 자동으로 삽입된다. 각 영상의 특징점들은 서로의 초기 공액점으로 사용되며, 영역기준 영상정합으로 정제된다. 영상정합의 과정 중 정합에 실패한 점들은 초기 공액점의 위치를 정합에 성공한 주변의 여섯 점들을 이용하여 재 계산한 후 정제된다. 타깃영상과 검색영상의 역할을 바꾸어 수행한 영상정합의 질적 평가 결과, 97.3%의 점들이 한 화소 이하의 절대거리를 나타내었다.

표면정보 기반 영상정합에서의 대표점 추출기법 비교 연구 (Comparison of Representative Point Sampling Methods in Surface Based Image Registration)

  • 박지영;최유주;김명희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.347-350
    • /
    • 2003
  • 표면정보 기반 영상정합기법은 대상기관에서 추출된 표면정보를 기반으로 변환을 추정하여 서로 다른 영상의 전체적 형태의 유사성 정도를 최대화함으로써 정합을 수행하는 방법이다. 정합 수행에 있어 전체 객체를 가장 잘 대표하는 특정 개수의 표면점을 추출하고, 이 대표점으로부터 변환 값을 계산하는 것이 영상정합의 합리적인 최적화 단계를 위해 필수적이다. 대표점 추출결과에 따라 전체 정합의 결과가 달라지게 되므로 정합의 변환요소 값을 정확하게 구해낼 수 있는 대표점을 추출하기 위해 적절한 샘플링 기법의 선택이 요구된다. 본 연구에서는 효율적인 표면정보 기반 다중 모달리티 영상정합을 위해 계통추출법 기반 샘플링 기법과 특징점 탐지 기법 기반 샘플링 기법의 성능을 비교 분석하였다.

  • PDF

동적 프로그래밍을 이용한 특징점 정합 (Matching Of Feature Points using Dynamic Programming)

  • 김동근
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.73-80
    • /
    • 2003
  • 본 논문에서는 기준영상과 탐색영상 사이의 대응되는 특징 점을 정합 하는 알고리즘을 제안한다. 두 영상에서 특징 점을 찾기 위하여 Harris의 코너 점 검출기를 사용하였다. 기준영상의 각 특징 점에 대해, 정규상관계수가 임계치 이상인 탐색영상의 특징 점들로 후보 정합 점을 구한다. 최종적으로 동적 프로그래밍을 사용하여 후보 정합 점들 중에서 대응되는 특징 점을 구한다. 실험으로 인위적인 영상과 실제 영상에서 특징 점을 정합 하는 결과를 보였다.

라이다 데이터와 항공영상을 이용한 DSM 생성 (DSM Generation using LIDAR and Image Data)

  • 홍주석;최경아;이임평;민성홍
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.66-71
    • /
    • 2009
  • 최근 가상도시, 위치기반시스템 등 여러 분야에서 도심지역의 고해상도 DSM의 수요가 증가하고 있다. 고해상도 DSM을 획득하는데 항공 라이다 측량은 가장 효율적이고 경제적인 방법으로 인정받고 있다. 그러나 레이저 펄스는 도시건물의 모서리와 코너보다는 주로 표면에서 반사되기 때문에 일반적으로 라이다 DSM은 명확한 수직 breakline을 포함하기 힘들다. 이에 본 연구에서는 라이다 데이터와 항공영상의 결합을 통해서 고품질의 도시지역 DSM을 생성하는 새로운 방법을 제안하고자 한다. 제안된 방법은 (1) 서로 다른 두 센서에서 획득된 라이다 데이터와 영상의 기하 정합, (2) 라이다 데이터를 이용한 영상정합, (3) 영상정합을 통해 획득된 지상점과 라이다 데이터를 이용한 DSM 생성순으로 이루어진다. 영상 정합을 위한 지상점의 초기값으로 대상지의 평균고도를 높이로 사용하는 것이 아니라 라이다 데이터로부터 얻어진 높이를 사용한다면 영상 정합이 아주 정밀하게 이루어 질 수 있다. 이와 함께 정합된 영상으로부터 얻어진 지상점은 라이다 데이터 보다 더 높은 밀도를 갖게 된다. 따라서 DSM 생성을 위한 격자에 라이다 데이터와 영상정합의 결과로 얻어진 지상점 모두를 내삽에 이용하여 DSM을 생성하고자 한다.

  • PDF