• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.035 seconds

Detection of Candidate Areas for Automatic Identification of Scirtothrips Dorsalis (볼록총채벌레 자동판정을 위한 후보영역 검출)

  • Moon, Chang Bae;Kim, Byeong Man;Yi, Jong Yeol;Hyun, Jae Wook;Yi, Pyoung Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.6
    • /
    • pp.51-58
    • /
    • 2012
  • Scirtothrips Dorsalis (Thysanoptera: Thripidae) recently has been recognized as a major source of the pest damage in the citrus fruit orchards. So its arrival has been predicted periodically but it is difficult to identify adults of the pest with the naked eyes because of their size smaller than the 0.8mm. In this paper, we propose a method to detect candidate areas for automatic identification of Scirtothrips Dorsalis on forecasting traps. The proposed method uses a histogram-based template matching where the composite image synthesized with the gray-scale image and the gradient image is used. In our experiments, images are acquired by the optical microscopy with 50 magnifications. To show the usefulness of the proposed method, it is compared with the method we previously suggested. Also, the performances when the proposed method is applied to noise-reduced images and gradient images are examined. The experimental results show that the proposed method is approximately 14.42% better than our previous method, 41.63% higher than the case that the noise-reduced image is used, and 21.17% higher than the case that the gradient image is used.

A Development of Grid Logic Game Contents by Using Image Processing Method (이미지처리 기법을 이용한 Grid Logic 게임 콘텐츠 개발)

  • Oh, Kab-Suk
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.413-421
    • /
    • 2009
  • Recently, various kinds of arcade games are offered through the network with the internet's development. And for the Grid Logic game, it is opened up for everyone who uses the internet but it has a disadvantage that only the provided puzzles can be played. To improve this, in this paper, we developed a Grid Logic game contents using an image of user's as a puzzle. In order to do this, we suggested a threshold decision method, the pre-processing stage of image processing. We showed a method of detecting aim image from a binary image, showed up by the suggested way, and a method of changing into the game data and carrier of the meaning as a specific image at the end of the game are the objects of this paper. The suggested algorithm is constructed as a Java applet and applied to the 10 objects such as characters, logos, persons, etc. to show that this algorithm is suitable for the appropriate acquisition of the Grid Logic game data through the experiment.

  • PDF

PCA-based Feature Extraction using Class Information (클래스 정보를 이용한 PCA 기반의 특징 추출)

  • Park, Myoung-Soo;Na, Jin-Hee;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.492-497
    • /
    • 2005
  • Feature extraction is important to classify data with large dimension such as image data. The representative feature extraction methods lot feature extraction ate PCA, ICA, LDA and MLP, etc. These algorithms can be classified in two groups: unsupervised algorithms such as PCA, LDA, and supervised algorithms such as LDA, MLP. Among these two groups, supervised algorithms are more suitable to extract the features for classification because of the class information of input data. In this paper we suggest a new feature extraction algorithm PCA-FX which uses class information with PCA to extract ieatures for classification. We test our algorithm using Yale face database and compare the performance of proposed algorithm with those of other algorithms.

A Fingerprint Identification System using Large Database (대용량 DB를 사용한 지문인식 시스템)

  • Cha, Jeong-Hee;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.203-211
    • /
    • 2005
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps; preprocessing, classification, and matching, in the classification. we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

A Single Camera based Method for Cubing Rectangular Parallelepiped Objects (한대의 카메라에 기반한 직육면체의 부피 계측 방법)

  • Won, Jong-Won;Chung, Yun-Su;Kim, Woo-Seob;You, Kwang-Hun;Lee, Yong-Joon;Park, Kil-Houm
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.5
    • /
    • pp.562-573
    • /
    • 2002
  • In this paper, we propose a method for measuring the volume of packages for the efficient handling of the packages. Using the geometrical characteristics of the rectangular parallelepiped type objects, the method measures the volume of packages with one camera only in real time. In preprocessing of volume measurement, the method extracts outer lines of the object and then crossing points of the lines as feature points or vertexes. From these cross points(-feature points-), the volume of the package is calculated. Compared to the direct feature extraction, the proposed method shows especially the blurring robust result by using the line for feature extraction. Additionally, the method can get the stable result by considering object's direction. From experimental results, it is demonstrated that this method is very effective for the real time volume measurement of the rectangular parallelepiped.

Seal Detection in Scanned Documents (스캔된 문서에서의 도장 검출)

  • Yu, Kyeonah;Kim, Kyung-Hye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.65-73
    • /
    • 2013
  • As the advent of the digital age, documents are often scanned to be archived or to be transmitted over the network. The largest proportion of documents is texts and the next is seal images indicating the author of the documents. While a lot of research has been conducted to recognize texts in scanned documents and commercialized text recognizing products are developed as highlighted the importance of the scanned document, information about seal images is discarded. In this paper, we study how to extract the seal image area from the color or black and white document containing the seal image and how to save the seal image. We propose a preprocessing step to remove other components except for the candidate outlines of the seal imprint from scanned documents and a method to select the final region of interest from these candidates by using the feature of seal images. Also in case of a seal imprint overlapped with texts, the most similar image among those stored in the database is selected through the template matching process. We verify the implemented system for a various type of documents produced in schools and analyze the results.

Motion Sickness Measurement and Analysis in Virtual Reality using Deep Neural Networks Algorithm (심층신경망 알고리즘을 이용한 가상환경에서의 멀미 측정 및 분석)

  • Jeong, Daekyo;Yoo, Sangbong;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • Cybersickness is a symptom of dizziness that occurs while experiencing Virtual Reality (VR) technology and it is presumed to occur mainly by crosstalk between the sensory and cognitive systems. However, since the sensory and cognitive systems cannot be measured objectively, it is difficult to measure cybersickness. Therefore, methodologies for measuring cybersickness have been studied in various ways. Traditional studies have collected answers to questionnaires or analyzed EEG data using machine learning algorithms. However, the system relying on the questionnaires lacks objectivity, and it is difficult to obtain highly accurate measurements with the machine learning algorithms. In this work, we apply Deep Neural Network (DNN) deep learning algorithm for objective cybersickness measurement from EEG data. We also propose a data preprocessing for learning and network structures allowing us to achieve high performance when learning EEG data with the deep learning algorithms. Our approach provides cybersickness measurement with an accuracy up to 98.88%. Besides, we analyze video characteristics where cybersickness occurs by examining the video segments causing cybersickness in the experiments. We discover that cybersickness happens even in unusually persistent changes in the darkness such as the light in a room keeps switching on and off.

Efficient Intra Predictor Design for H.264/AVC Decoder (H.264/AVC 복호기를 위한 효율적인 인트라 예측기 설계)

  • Kim, Ok;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.175-178
    • /
    • 2009
  • H.264/AVC is a video coding standard of ITU-T and ISO/IEC, and widely spreads its application due to its high compression ratio more than twice that of MPEG-2 and high image quality. In this paper, we explained Intra Prediction in H.264/AVC, which is able to achieve higher compressing efficiency from correlation removal of adjacent samples in spatial domain, and proposed efficient Intra Predictor architecture design for H.264/AVC decoder. The proposed system reduced computation cycle using processing element and precomputation processing element and also reduced the number of access to external memory using efficient register. We designed the proposed system with Verilog-HDL and verified with suitable test vector. The proposed Intra Predictor achieved about 60% cycle reduction comparing with existing Intra Predictors.

  • PDF

Proposal of autonomous take-off drone algorithm using deep learning (딥러닝을 이용한 자율 이륙 드론 알고리즘 제안)

  • Lee, Jong-Gu;Jang, Min-Seok;Lee, Yon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2021
  • This study proposes a system for take-off in a forest or similar complex environment using an object detector. In the simulator, a raspberry pi is mounted on a quadcopter with a length of 550mm between motors on a diagonal line, and the experiment is conducted based on edge computing. As for the images to be used for learning, about 150 images of 640⁎480 size were obtained by selecting three points inside Kunsan University, and then converting them to black and white, and pre-processing the binarization by placing a boundary value of 127. After that, we trained the SSD_Inception model. In the simulation, as a result of the experiment of taking off the drone through the model trained with the verification image as an input, a trajectory similar to the takeoff was drawn using the label.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.