1 |
Y. J. Choi, Y. W. Lee and B.G. Kim, "Residual-Based Graph Convolutional Network for Emotion Recognition in Conversation for Smart Internet of Things," Big Data, Aug., 2021. DOI:10.1089/big.2020.0274
DOI
|
2 |
J. M. Miranda and M. Romero, "A prototype to measure rainbow trout's length using image processing," Aquacultural engineering, vol. 76, pp. 41-49, Aug., 2017. DOI:10.1016/j.aquaeng.2017.01.003
DOI
|
3 |
M. O. Balaban, G. F. unal Sengor, M. G. Soriano and E. G. Ruiz, "Using image analysis to predict the weight of Alaskan salmon of different species," Journal of food science, vol. 75, no. 3, pp. E157-E162, April, 2010. DOI:10.1111/j.1750-3841.2010.01522.x
DOI
|
4 |
Y. Wu, R. Zhuang and Z. Cui, "Automatic Sorting System of Large Yellow Croaker Based on Machine Vision," in Proc. IEEE Int. Conf. on High Performance Big Data and Intelligent Systems (HPBD&IS), pp. 233-237, May, 2019. DOI : 10.1109/HPBDIS. 2019.8735486
DOI
|
5 |
K. A. Kamaruzzaman, A. Mahfurdz, M. Hashim and M. N. Bidin, "Design and performance evaluation of semi-automatic fish cutting machine for industry," IOP Conference Series: Materials Science and Engineering, vol. 864, no. 1, IOP Publishing, Feb., 2020. DOI:10.1088/1757-899X/864/1/012112
DOI
|
6 |
C. U. Son, I. Kim, H. H. Tak and S. B. Lee, "Implementation of the Controller for intelligent Process System Using Neural Network," in Proc. Conf. Korean Institute of Intelligent Systems (KIIS), pp. 376-379, Nov., 2000.
|
7 |
D. A. Konovalov, A. Saleh, D. B. Efremova, J. A. Domingos and D. R. Jerry, "Automatic weight estimation of harvested fish from images," 2019 Digital Image Computing: Techniques and Applications (DICTA), IEEE, pp. 1-7, Dec., 2019. DOI:10.1109/DICTA47822.2019.8945971
DOI
|
8 |
S. K. Kumaran, S. Mohapatra, D. P. Dogra, P. P. Roy and B. G. Kim, "Computer vision-guided intelligent traffic signaling for isolated intersections," Expert Systems with Applications, vol. 134, pp. 267-278, Nov., 2019. DOI:10.1016/j.eswa.2019.05.049
DOI
|
9 |
F. Antonucci and C. Costa. "Precision aquaculture: a short review on engineering innovations." Aquaculture International, vol. 28, no. 1, pp. 41-57, Aug., 2020. DOI :10.1007/s10499-019-00443-w
DOI
|
10 |
D. G. Lee, Y. S. Seo, "Testing cost reduction using nested mutation testing," in Proc. Int. Conf. on Multimedia Information Technology and Applications (MITA), Seogwipo, KOR, pp. 462-463, 2021.
|
11 |
M. Kobayashi, S. Msangi, M. Batka, S. Vannuccini, M. Dey, et al. "Fish to 2030: the role and opportunity for aquaculture," Aquaculture economics & management, vol. 19, no. 3 pp. 282-300, Aug., 2015. DOI:10.1080/13657305.2015.994240
DOI
|
12 |
M. Man, N. Abdullah, M. S. Rahim and I. M. Amin, "Fish Length Measurement: The Results from Different Types of Digital Camera," Journal of Advanced Agricultural Technologies, vol. 3, no.1, pp. 67-71, March, 2016. DOI:10.18178/joaat.3.1.67-71
DOI
|
13 |
M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography," Communications of the ACM, vol. 24, no. 6, pp. 381-395, June, 1981. DOI:10.1145/358669.358692
DOI
|
14 |
G. Merino, M. Barange, J. L. Blanchard, J. Harle, R. Holmes, et al., "Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate," Global Environmental Change, vol. 22, no. 4, pp. 795-806, March, 2012. DOI:10.1016/j.gloenvcha.2012.03.003
DOI
|
15 |
N.N Gaikwad, T. Ahmad, G. B. Yenge and A. Shinh, "Design, Development and Performance Evaluation of Fish Descaling Machine," Fishery Technology, vol. 54, no. 4, Oct., 2017.
|
16 |
H. Hong, X. Yang, Z. You, and F. Cheng, "Visual quality detection of aquatic products using machine vision," Aquacultural Engineering, vol. 63, pp. 62-71, Oct., 2014. DOI:10.1016/j.aquaeng.2014.10.003
DOI
|
17 |
G. Sanchez-Torres, A. Ceballos-Arroyo and S. Robles-Serrano, "Automatic measurement of fish weight and size by processing underwater hatchery images," Engineering Letters, vol. 26, no. 4, pp. 461-472, Nov., 2018.
|
18 |
H. Azarmdel, S. S. Mohtasebi, A. Jafari and A. R. Munoz, "Developing an orientation and cutting point determination algorithm for a trout fish processing system using machine vision," Computers and Electronics in Agriculture, vol. 162, pp. 613-629, July, 2019. DOI:10.1016/j.compag.2019.05.005
DOI
|
19 |
I. Laradji, A. Saleh, P. Rodriguez, D. Nowrouzezahrai, M. R. Azghadi, et al. "Affinity lcfcn: Learning to segment fish with weak supervision," arXiv preprint arXiv:2011, 03149, Nov., 2020. DOI:10.48550/arXiv.2011.03149
|
20 |
T. M. Banhazi, M. Tscharke, W. M. Ferdous, C. Saunders, S. H. Lee, "Improved image analysis based system to reliably predict the live weight of pigs on farm: Preliminary results," Australian Journal of Multi-disciplinary Engineering, vol. 8, no. 2, pp. 107-119, Sep., 2011. DOI:10.1080/14488388.2011.11464830
DOI
|
21 |
S. H. Hyun, S. C. Lee, K. H. Kim and K. S. Seo, "Shape, Volume Prediction Modeling and Identical Weights Cutting for Frozen Fishes," Journal of Korean Institute of Intelligent Systems, vol. 22, no. 3, pp. 294-299, June, 2012. DOI:10.5391/JKIIS.2012.22.3.294
DOI
|
22 |
X. Li, "Study on the Freshness Identification of Frozen-Thaw Fish Based on Hyperspectral Detection Technology," in Proc. Int. Conf. on Multimedia Information Technology and Applications (MITA), Seogwipo, KOR, pp. 96-99, 2021.
|
23 |
A. Pezzuolo, M. Guarino, L. Sartori, L. A. Gonzalez and F. Marinello, "On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera," Computers and electronics in agriculture, vol. 148, pp. 29-36, May, 2018. DOI:10.1016/j.compag.2018.03.003
DOI
|
24 |
R. A. Hauser-Davis, T. F. Oliveira, A. M. Silveira, T. B. Silva and R. L. Ziolli, "Case study: Comparing the use of nonlinear discriminating analysis and Artificial Neural Networks in the classification of three fish species: acaras (Geophagus brasiliensis), tilapias (Tilapia rendalli) and mullets (Mugil liza)," Ecological Informatics, vol. 5, no. 6, pp. 474-478, Nov., 2010. DOI:10.1016/j.ecoinf.2010.08.002
DOI
|
25 |
T. T. E. Vo, H. Ko, J. H. Huh and Y. Kim, "Overview of Smart Aquaculture System: Focusing on Applications of Machine Learning and Computer Vision," Electronics, vol. 10, no. 22, 2882, Nov., 2021. DOI:10.3390/electronics10222882
DOI
|
26 |
S. H. Kim and J. H. Huh, "Consistency of medical data using intelligent neuron faster R-CNN algorithm for smart health care application," Healthcare, vol. 8, no. 2, Multidisciplinary Digital Publishing Institute, June, 2020. DOI :10.3390/healthcare8020185
DOI
|
27 |
Y. Lee, D. Jun, B. G. Kim and H. Lee, "Enhanced Single Image Super Resolution Method Using Lightweight Multi-Scale Channel Dense Network," Sensors, vol. 21, no. 10, 3351, May, 2021. DOI:10.3390/s21103351
DOI
|
28 |
W. H. Choi, "For the Indirect Measurement of Ocean Acidification, Finding a Plan to Collect Big Data of Crab Catches Using Domestic Fishing Boats: Focusing on the West Sea in South Korea," in Proc. Int. Conf. on Multimedia Information Technology and Applications (MITA), Seogwipo, KOR, pp. 458-461, 2021
|
29 |
R. JONGJARAUNSUK and W. TAPARHUDEE, "Weight Estimation of Asian Sea Bass (Lates calcarifer) Comparing Whole Body with and without Fins using Computer Vision Technique," Walailak Journal of Science and Technology (WJST), vol.18, no. 10, pp. 9495, May, 2021. DOI:10.48048/wjst.2021.9495
DOI
|
30 |
I. Nyalala, C. Okinda, N. Makange, T. Korohou, Q. Chao, et al., "On-line weight estimation of broiler carcass and cuts by a computer vision system," Poultry Science, vol. 100, no. 12, 101474, Dec., 2021. DOI:10.1016/j.psj.2021.101474
DOI
|
31 |
D. Li and L. Du, "Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish," Artificial Intelligence Review, pp. 1-40, Nov., 2021. DOI:10.1007/s10462-021-10102-3
DOI
|
32 |
J. Park, J. Y. Kim, J. H. Huh, H. S. Lee, S. H. Jung, et al., "A Novel on Conditional Min Pooling and Restructured Convolutional Neural Network," Electronics, vol. 10, no. 19, 2407, Oct., 2021. DOI:10.3390/electronics10192407
DOI
|
33 |
Q, Al-Jubouri, W. Al-Nuaimy, M. Al-Taee and I. Young, "Towards automated length-estimation of free-swimming fish using machine vision," in Proc, IEEE. Int, Conf. on Systems, Signals & Devices (SSD), pp. 469-474, March, 2017. DOI:10.1109/SSD.2017.8166931
DOI
|
34 |
S. Yang, Z. Zhang, J. Yi, J. Liu and J. Wang, "Design of bay scallop roll grading equipment," Food Research And Development, vol. 37, no. 12, pp. 220-224, 2016.
|
35 |
C. Pornpanomchai, B. Lurstwut, P. Leerasakultham and W. Kitiyanan, "Shape-and texture-based fish image recognition system." Agriculture and Natural Resources, vol. 47, no. 4 pp. 624-634, Aug., 2013.
|
36 |
A. Voulodimos, N. Doulamis, A. Doulamis and E. Protopapadakis, "Deep learning for computer vision: A brief review," Computational intelligence and neuroscience, vol. 2018, Feb., 2018. DOI:10.1155/2018/7068349
DOI
|