• Title/Summary/Keyword: 영상 데이터 증대 기술

Search Result 73, Processing Time 0.034 seconds

Development of Emotion-Based Human Interaction Method for Intelligent Robot (지능형 로봇을 위한 감성 기반 휴먼 인터액션 기법 개발)

  • Joo, Young-Hoon;So, Jea-Yun;Sim, Kee-Bo;Song, Min-Kook;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.587-593
    • /
    • 2006
  • This paper is to present gesture analysis for human-robot interaction. Understanding human emotions through gesture is one of the necessary skills for the computers to interact intelligently with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. For efficient operation we used recognizing a gesture with HMM(Hidden Markov Model). We constructed a large gesture database, with which we verified our method. As a result, our method is successfully included and operated in a mobile system.

A Collaborative Video Annotation and Browsing System using Linked Data (링크드 데이터를 이용한 협업적 비디오 어노테이션 및 브라우징 시스템)

  • Lee, Yeon-Ho;Oh, Kyeong-Jin;Sean, Vi-Sal;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.203-219
    • /
    • 2011
  • Previously common users just want to watch the video contents without any specific requirements or purposes. However, in today's life while watching video user attempts to know and discover more about things that appear on the video. Therefore, the requirements for finding multimedia or browsing information of objects that users want, are spreading with the increasing use of multimedia such as videos which are not only available on the internet-capable devices such as computers but also on smart TV and smart phone. In order to meet the users. requirements, labor-intensive annotation of objects in video contents is inevitable. For this reason, many researchers have actively studied about methods of annotating the object that appear on the video. In keyword-based annotation related information of the object that appeared on the video content is immediately added and annotation data including all related information about the object must be individually managed. Users will have to directly input all related information to the object. Consequently, when a user browses for information that related to the object, user can only find and get limited resources that solely exists in annotated data. Also, in order to place annotation for objects user's huge workload is required. To cope with reducing user's workload and to minimize the work involved in annotation, in existing object-based annotation automatic annotation is being attempted using computer vision techniques like object detection, recognition and tracking. By using such computer vision techniques a wide variety of objects that appears on the video content must be all detected and recognized. But until now it is still a problem facing some difficulties which have to deal with automated annotation. To overcome these difficulties, we propose a system which consists of two modules. The first module is the annotation module that enables many annotators to collaboratively annotate the objects in the video content in order to access the semantic data using Linked Data. Annotation data managed by annotation server is represented using ontology so that the information can easily be shared and extended. Since annotation data does not include all the relevant information of the object, existing objects in Linked Data and objects that appear in the video content simply connect with each other to get all the related information of the object. In other words, annotation data which contains only URI and metadata like position, time and size are stored on the annotation sever. So when user needs other related information about the object, all of that information is retrieved from Linked Data through its relevant URI. The second module enables viewers to browse interesting information about the object using annotation data which is collaboratively generated by many users while watching video. With this system, through simple user interaction the query is automatically generated and all the related information is retrieved from Linked Data and finally all the additional information of the object is offered to the user. With this study, in the future of Semantic Web environment our proposed system is expected to establish a better video content service environment by offering users relevant information about the objects that appear on the screen of any internet-capable devices such as PC, smart TV or smart phone.

Visual Discomfort Analysis of Binocular Depth Change on 3D Stereoscopic Imaging (입체영상의 양안 깊이 변화에 따른 시청 피로도 분석)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • The development of stereoscopic display hardwares and 3D authoring softwares expands its application areas from particular virtual simulation applications to general movies, games, advertising applications. However, the binocular-based 3D stereoscopic images cause fatigue to viewers. Recent performed many research results about the binocular stereoscopy's depth perception and viewers' fatigue are derived from experimental users studies. In some results, watching and making guidelines for 3D stereoscopic imaging contents are introduced. The 3D stereoscopic-related contents have the contradictory aspects, which are audiences' pursuit of a tolerable minimum fatigue and producer's its of excessive depth changes for providing viewers' immersion. This paper provides user experiments and analysis data in aspects of 3D depth changes. For use of producers, a safety zone and translational velocity of 3D depth changes are introduced. Also, on the viewer side, we present the depth change adaptation time by using an EEG device.

Implementation of Query Expansion Multimedia Data Retrieval System using "FUN" Based Ontology of Emotion (재미 감성 주제 온톨로지를 이용한 질의어 확장 멀티미디어 데이터 검색 시스템 구현)

  • Lee, Jung-Song;Byun, Dong-Ryul;Park, Soon-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.279-284
    • /
    • 2010
  • 최근 컴퓨터와 네트워크의 기술 발달로 멀티미디어 데이터가 폭발적으로 증가하고 있다. 따라서 정보검색 시스템도 텍스트 데이터 위주에서 벗어나 멀티미디어 데이터 검색이 큰 비중을 차지하고 있다. 또한 멀티미디어 데이터 질의어처리도 기술적인 변화와 함께 다양한 질의어 확장으로 검색의 정확성을 높이고 있다. 본 논문에서는 인간의 감성에 대한 '재미' 주제 온톨로지를 구축하여 질의어 확장에 응용하였고, 한편의 동영상에서 재미 요소를 찾아내는 멀티미디어 데이터 검색 시스템을 구축하였다. 온톨로지 구축은 한글 워드넷(KorLex)에서 "재미"라는 특정 감소 요소의 의미 계층 구조를 파악하고 토픽맵을 이용하여 구축하였다. 또한, 온톨로지에 정의된 용어들 사이의 가중치는 실시간으로 계산하여 질의어를 확장에 적용하였으며, 따라서 검색의 효율성과 질을 높였다. 검색방법은 사용자가 질의어를 직접 입력하는 텍스트 입력 검색과 온톨로지 구조를 이용한 GUI 인터페이스 검색방법으로 나누어 사용자의 편의성을 증대시켰다.

  • PDF

Correlated Structure of Information Superhighway and Wireless network (초고속 통신망과 무선전송망의 연계 방안 연구)

  • 황치규;박종필;황재정;정동수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.403-407
    • /
    • 1998
  • 현재 건설중인 초고속통신망에서 방대한 양의 음성, 영상 및 데이터의 전송이 유선망을 통해 가능하다. 그러나 현존하는 가입자망은 매우 낮은 속도의 이선망으로 구성되어 있어서 멀티미디어 정보를 쉽게 다룰 수 없다. 이 문제를 해결하기 위해 유선망의 용량을 증대시키기 보다 이동성과 휴대성을 제공하는 무선가입자망 기술이 더 효율적이다. 무선 CATV를 위한 MMDS 또는 LMDS, 그리고 무선 전화 서비스를 위한 WLL 기술이 세계적으로 개발되고 있으며 LMCS의 개념은 셀간의 통신에 주안점을 두고 있다. 따라서 적정한 시스템과 가능한 주파수의 선택에 의해 다양한 서비스가 제공 가능하다. 본 논문에서는 기 제안된 무선 기술의 특성을 분석하고 대도시, 도서, 산악 지방이 혼재한 우리나라 실정에 맞게 고속 무선가입자망 설치를 위한 체계적인 접근을 제시한다.

  • PDF

Re-classifying Method for Face Recognition (얼굴 인식 성능 향상을 위한 재분류 방법)

  • Bae Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.105-114
    • /
    • 2004
  • In the past year, the increasing concern about the biometric recognition makes the great activities on the security fields, such as the entrance control or user authentication. In particular, although the features of face recognition, such as user friendly and non-contact made it to be used widely, unhappily it has some disadvantages of low accuracy or low Re-attempts Rates. For this reason, I suggest the new approach to re-classify the classified data of recognition result data to solve the problems. For this study, I will use the typical appearance-based, PCA(Principal Component Analysis) algorithm and verify the performance improvement by adopting the re-classification approach using 200 peoples (10 pictures per one person).

  • PDF

A Method for Extracting Vehicle Speed Using Aerial Images (항공영상을 이용한 차량속도 추출 방법)

  • Hwang, Jung-Rae;Kang, Hye-Young;Choi, Hyun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Due to existing infrastructure to collect traffic information was constructed to expressway and national highway, we cannot precisely know traffic situation for their surrounding area. Therefore, it is difficult to provide reliable traffic information to users using navigation and smartphone. In this research, we collected aerial images by using unmanned airship capable of wide-area monitoring and proposed a method extracting vehicle speed from the collected data. And, we performed experiments to verify the accuracy of extracted vehicle speed. Our method proposed in this research can be used to extract a new approach of traffic information according to increased demand of traffic monitoring. We expect that our method will become a new research trend in traffic information application.

A Study on Clustering Representative Color of Natural Environment of Korean Peninsula for Optimal Camouflage Pattern Design (최적 위장무늬 디자인을 위한 한반도 자연환경 대표 색상 군집화 연구)

  • Chun, Sungkuk;Kim, Hoemin;Yoon, Seon Kyu;Yun, Jeongrok;Kim, Un Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.315-316
    • /
    • 2019
  • 전투복, 군용 천막 등에 사용되는 위장무늬는 군 작전 수행 시 주변 환경의 색상, 패턴을 모사하여 개인병사 및 무기체계의 위장 기능을 극대화하고, 이를 통해 아군의 생명과 시설피해를 최소화하기 위한 목적으로 사용된다. 특히 최근 들어 군의 작전환경과 임무가 복잡하고 다양해짐에 따라, 작전환경에 대한 데이터의 취득 및 정량적 분석을 통해 전장 환경에 최적화된 위장무늬 패턴 및 색상 추출에 대한 연구의 필요성이 증대되고 있다. 본 논문에서는 한반도 자연환경 영상에 대한 자기 조직화 지도(SOM, Self-organizing Map) 기반의 한반도 자연환경 대표 색상 군집화 연구 방법에 대해 서술한다. 이를 위해 한반도 내 위도를 고려한 장소에서 시간별, 계절별 자연환경 영상 수집을 진행하며, 수집된 영상 내 다수의 화소의 군집화를 위해 2차원 SOM을 활용한다. 영상 내 각 화소의 색상 값에 대한 SOM의 학습 시, RGB공간상의 색차/색상 인지 왜곡을 피하기 위하여 CIEDE2000 색차 식을 통해 군집화를 진행한다. 실험결과에서는 온라인상으로 수집한 여름 및 가을철 대표 색상 군집화 결과와, 현재까지 수집된 계절별 자연환경 사진 내 6억 7648개 화소에 대한 대표 색상 군집화 결과를 보여준다.

  • PDF

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

Development of Radar Super Resolution Algorithm based on a Deep Learning (딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발)

  • Ho-Jun Kim;Sumiya Uranchimeg;Hemie Cho;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF