• Title/Summary/Keyword: 영상 기반 추적

Search Result 864, Processing Time 0.031 seconds

Scale-Free Object Tracking Algorithm (스케일 변화에 강건한 물체 추적 알고리즘)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.657-658
    • /
    • 2008
  • 개인과 사회의 안전을 중요시하는 요즘 영상감시시스템의 비중은 날이 갈수록 커져가고 있다. 본 논문은 지능형 영상 감시 시스템에 적용되는 비전기반의 물체 추적시스템에 관한 내용으로 이루어져 있다. 지능형 영상 감시 시스템은 실제 국내외 많은 기업에서 활발히 연구하고 대표적인 분야이다. 하지만, 제품화되기에는 아직 많은 문제가 존재한다. 이러한 문제가 나타나는 가장 큰 원인 중 하나는 타겟의 크기가 변화하여 정보가 손상되는 경우이다. 이로 인해 정확한 타겟정보를 얻지 못하고, 배경정보를 갱신함으로써 추적성능을 크게 저하시키게 된다. 따라서 본 논문에서는 이러한 문제를 최소화하기 위하 방법을 제안한다.

  • PDF

Robust Planar Tracking Based on Iterative Homography Refinement (반복적 호모그래피 개선에 의한 강건한 평면 추적)

  • Kim, Karam;Park, Jungsik;Park, Hanhoon;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.302-305
    • /
    • 2012
  • 평면 추적(planar tracking) 기반의 카메라 추적에 있어, 특징 검출자의 반복성과 특징 기술자(descriptor)의 정합 성능에 따라서 떨림 현상(jitter)이 발생한다. 특히, 모바일 환경에서와 같은 연산력이 부족한 환경에서 고속화를 위해 특징 검출 및 기술 알고리즘을 간략화 시킬 경우, 이러한 떨림 현상은 심각한 문제가 된다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 영상을 워핑(warping)하여 특징 점을 재검출한 후 카메라 영상과 참조 영상(reference image) 사이의 호모그래피를 보완하는 방법을 제안한다. 실험을 통해 제안된 방법이 특징 검출 및 기술 알고리즘의 성능을 보완하여 떨림 현상을 크게(70% 이상) 감소시킴을 확인하였다.

  • PDF

Pedestrian Detection using YOLO and Tracking (YOLO 네트워크와 추적 기법을 이용한 보행자 검출)

  • Lee, Sang-Hoon;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.79-81
    • /
    • 2018
  • 최근 딥 러닝의 발전과 함께 보행자 검출 기술의 성능이 발전하면서 다양한 분야에서 응용되고 있다. 영상 내 보행자의 위치나 움직임을 파악함으로써 위험 지역이나 보안 지역에 접근하는 보행자를 찾아낼 수 있다. 일반적인 딥 러닝 기반의 물체 검출기는 멀리 있는 보행자와 같은 작은 물체를 검출 하는 데에 적합하지 않다. 또, 검출을 수행하기 위해서 큰 계산량을 필요로 하기 때문에, 동영상의 매 프레임 마다 수행하기 부적합 하다는 단점이 있다. 본 논문에서는 작은 물체도 잘 검출할 수 있도록 기존 YOLO 네트워크의 구조를 변경하고, 보행자 데이터를 이용하여 추가로 학습함으로써 보행자를 검출하는 성능을 증가시켰다. 그리고 검출한 보행자들에 대해 추적 기법을 이용함으로써, 동영상의 매 프레임 마다 검출을 수행하는 것을 피할 수 있도록 하였다. 실제로 DukeMTMC Dataset을 이용하여 실험을 해본 결과, YOLO 네트워크의 구조를 변경하고 추가 학습을 함으로써 검출 정확도가 개선되는 것을 확인할 수 있었다. 또, 추적 기법을 이용했을 때, 성능이 크게 떨어지지 않으면서 검출 속도를 개선할 수 있는 것을 확인할 수 있었다.

  • PDF

The Model based Tracking using the Object Tracking method in the Sequence Scene (장면 전환에서의 물체 추적을 통한 모델기반추적 방법 연구)

  • Kim, Se-Hoon;Hwang, Jung-Won;Kim, Ki-Sang;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.775-778
    • /
    • 2008
  • Augmented Reality is a growing area in virtual reality research, The world environment around us provides a wealth of information that is difficult to duplicate in a computer. This evidenced by the worlds used in virtual environments. An augmented reality system generates a composite view for the user. It is a combination of the real scene viewed by the user and a virtual scene generated by the computer that augments the scene with addition information. The registration method represent to the user enhances that person's performance in and perception of the world. It decide the direction and location between real world and 3D graphic objects. The registration method devide two method, Model based tracking and Move-Matching. This paper researched at to generate a commerce correlation using a tracking object method, using at a color distribution and information, in the sequence scene.

  • PDF

Appendicitis Extraction of Ultrasonographic Images using Enhanced FCM (개선된 FCM을 이용한 초음파 영상에서 충수염 추출)

  • Jung, Seung Hwan;Yi, Gyeong Yun;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.239-241
    • /
    • 2015
  • 본 논문에서는 클러스터 개수를 동적으로 생성하는 개선된 FCM을 적용하여 초음파 영상에서 충수염을 추출하는 방법을 제안한다. 초음파 영상에서 ROI 영역을 추출한 후, Max-Min 기반 이진화 기법을 적용한다. 이진화된 영상에서 근막 영역의 크기가 ROI 영역의 1/3이상을 차지한다는 정보를 이용하여 Labelling 기법을 적용하여 근막 영역을 추출한다. 근막의 최하단 좌표를 이용하여 근막의 하단 영역을 추출한 후, 근막의 하단 영역에서 객체들의 선명도를 높이기 위해 Blurring 기법과 Sharpening 기법을 적용한다. 충수염의 후보 영역을 추출하기 위해 FCM 알고리즘을 개선하여 양자화를 수행한다. 개선된 FCM 알고리즘으로 양자화를 수행하여 충수염의 후보 영역을 추출한다. 추출된 충수염의 후보 영역에서 8방향 윤곽선 추적 기법을 적용하여 객체들을 추출한다. 추출된 객체들 중에서 낮은 명암도를 가지고 초음파 전체 영상 크기의 1/3이하 되는 객체를 충수염으로 추출한다. 초음파 영상을 대상으로 제안된 방법을 적용하여 실험한 결과, 기존의 방법보다 충수염 영역의 추출률이 개선된 것을 확인하였다.

  • PDF

Implementation of Surveillance System using Motion Tracking Method based on Mobile (모바일 기반의 동작 추적 기법을 이용한 감시 시스템의 구현)

  • Kim, Hyeng-Gyun;Kim, Yong-Ho;Guen, Bae-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • This paper is using motion tracking by image segmentation to monitor intruders and to confirm based on mobile the relevant information. First, detect frame in animation that film fixed area, and make use of image subtraction between two frame that adjoin, segment fixed backing and target who move. Segmental foreground object to the edge detecting the location specified by the edge of the median estimate extracted by analyzing the motion of the intruders to monitor. When a motion is detected, the detected image is transmitted by using the W AP pull basis image transmission method on the mobile client data terminal.

  • PDF

Methodology for Vehicle Trajectory Detection Using Long Distance Image Tracking (원거리 차량 추적 감지 방법)

  • Oh, Ju-Taek;Min, Joon-Young;Heo, Byung-Do
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • Video image processing systems (VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on a wide-area detection algorithm provide traffic parameters such as flow and velocity as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. However, unlike human vision, VIPS cameras have difficulty in recognizing vehicle movements over a detection zone longer than 100 meters. Over such a distance, the camera operators need to zoom in to recognize objects. As a result, vehicle tracking with a single camera is limited to detection zones under 100m. This paper develops a methodology capable of monitoring individual vehicle trajectories based on image processing. To improve traffic flow surveillance, a long distance tracking algorithm for use over 200m is developed with multi-closed circuit television (CCTV) cameras. The algorithm is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of incident detection.

  • PDF

The Pupil Motion Tracking Based on Active Shape Model Using Feature Weight Vector (특징 가중치 벡터를 적용한 능동 형태 모델 기반의 눈동자 움직임 추적)

  • Kim, Soon-Beak;Lee, Soo-Heum
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • 본 논문은 특징 가중치 벡터를 적용하여 능동형태 모델(Active Shape Model)기반에서 눈동자의 움직임 추적 속도를 향상시키는 방법을 제안한다. 일반적인 능동형태 모델에서는 객체 추적을 위한 PDM 구성을 위해 각 특징점 구성 벡터의 유클리디안 거리의 최소 값으로 Training Set정렬 과정을 수행한다. 이 과정에서 적절하지 못한 샘플 영상으로 인해 안정된 PDM을 구성하지 못하는 문제점이 발생한다. 이러한 문제점을 해결하기 위하여 본 논문에 서는 형태를 구성하는 특징점마다 가중치를 부여하는 벡터를 작성하고, 최소자승근사법으로 최유사 특징점 벡터를 산출하기 위한 선형방정식을 구상하였다. 이로 인해 안정된 PDM을 구성할 수 있었으며, 눈동자 추적실험을 통해 형태적 움직임을 보정하는 실험을 수행하였다. 실험결과 기존의 능동형태 모델에 비해 반복연산의 횟수가 줄어들고, 다양한 형태로 나타나는 눈동자의 움직임 추적에 보다 안정적인 결과를 얻을 수 있었다.

  • PDF

Vehicle Tracking for Forward Vehicle Detection (전방차량 인식을 위한 차량 추적 방법)

  • Jeong, Sung-Hwan;Kwon, Dong-Jin;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.486-487
    • /
    • 2012
  • 본 논문에서는 차량 내에 설치된 카메라를 이용하여 전방차량을 인식하는 FCW(Forward Collision Warning)시스템에서 주행 중인 전방 차량을 추적하는 알고리즘을 제안한다. 전방 차량의 후보 영역을 검출하기 위해 Haar-Adaboost를 이용하였으며 검색된 차량 후보 영역 내의 에지 정보를 이용하여 차량 후보 영역을 필터링하였다. 필터링된 차량 영역은 영역기반과 Kalman 예측치를 이용하여 차량을 추적하는 방법으로 차량 검색기가 차량 영역을 검색하지 못하는 경우 Kalman 예측치를 통해 차량 후보 영역을 예측하고 예측된 차량 영역을 검증함으로써 효율적인 전방 차량 인식이 가능하였다. 본 제안 방법을 실험한 결과 이전 프레임에서 추적되던 차량 후보 영역이 현재 프레임에서 Haar-Adaboost가 차량 후보 영역을 검색하지 못하는 경우에 영역기반과 Kalman 예측치를 통하여 현재 프레임에서 전방차량을 연속적으로 추적하는 것을 확인하였다. 본 제안 방법은 영상을 이용한 FCW 시스템에 사용될 수 있을것으로 사료된다.

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.