• Title/Summary/Keyword: 영상 기반 객체 추적

Search Result 265, Processing Time 0.029 seconds

Hand posture recognition robust to rotation using temporal correlation between adjacent frames (인접 프레임의 시간적 상관 관계를 이용한 회전에 강인한 손 모양 인식)

  • Lee, Seong-Il;Min, Hyun-Seok;Shin, Ho-Chul;Lim, Eul-Gyoon;Hwang, Dae-Hwan;Ro, Yong-Man
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1630-1642
    • /
    • 2010
  • Recently, there is an increasing need for developing the technique of Hand Gesture Recognition (HGR), for vision based interface. Since hand gesture is defined as consecutive change of hand posture, developing the algorithm of Hand Posture Recognition (HPR) is required. Among the factors that decrease the performance of HPR, we focus on rotation factor. To achieve rotation invariant HPR, we propose a method that uses the property of video that adjacent frames in video have high correlation, considering the environment of HGR. The proposed method introduces template update of object tracking using the above mentioned property, which is different from previous works based on still images. To compare our proposed method with previous methods such as template matching, PCA and LBP, we performed experiments with video that has hand rotation. The accuracy rate of the proposed method is 22.7%, 14.5%, 10.7% and 4.3% higher than ordinary template matching, template matching using KL-Transform, PCA and LBP, respectively.

A Real-time Face Recognition System using Fast Face Detection (빠른 얼굴 검출을 이용한 실시간 얼굴 인식 시스템)

  • Lee Ho-Geun;Jung Sung-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1247-1259
    • /
    • 2005
  • This paper proposes a real-time face recognition system which detects multiple faces from low resolution video such as web-camera video. Face recognition system consists of the face detection step and the face classification step. At First, it finds face region candidates by using AdaBoost based object detection method which have fast speed and robust performance. It generates reduced feature vector for each face region candidate by using principle component analysis. At Second, Face classification used Principle Component Analysis and multi-SVM. Experimental result shows that the proposed method achieves real-time face detection and face recognition from low resolution video. Additionally, We implement the auto-tracking face recognition system using the Pan-Tilt Web-camera and radio On/Off digital door-lock system with face recognition system.

YOLO models based Bounding-Box Ensemble Method for Patient Detection In Homecare Place Images (조호환경 내 환자 탐지를 위한 YOLO 모델 기반 바운딩 박스 앙상블 기법)

  • Park, Junhwi;Kim, Beomjun;Kim, Inki;Gwak, Jeonghwan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.562-564
    • /
    • 2022
  • 조호환경이란 환자의 지속적인 추적 및 관찰이 필요한 환경으로써, 병원 입원실, 요양원 등을 의미한다. 조호환경 내 환자의 이상 증세가 발생하는 시간 및 이상 증세의 종류는 예측할 수 없기에 인력을 통한 상시 관리는 필수적이다. 또한, 환자의 이상 증세 발견 시간은 발병 시점부터의 소요 시간이 생사와 즉결되기에 빠른 발견이 매우 중요하다. 하지만, 인력을 통한 상시 관리는 많은 경제적 비용을 수반하기에 독거 노인, 빈민층 등 요양 비용을 충당하지 못하는 환자들이 수혜받는 것은 어려우며, 인력을 통해 이루어지기 때문에 이상 증세 발병 즉시 발견에 한계를 가진다. 즉, 기존까지 조호환경 내 환자 관리 방식은 경제적 비용과 이상 증세 발병 즉시 발견에 한계를 가진다는 문제점을 가진다. 따라서 본 논문은 YOLO 모델의 조호환경 내 환자 탐지 성능 비교 및 바운딩 박스 앙상블 기법을 제안한다. 이를 통해, 딥러닝 모델을 통한 환자 상시 관리가 이루어지기에 높은 경제적 비용문제를 해소할 수 있다. 또한, YOLO 모델 바운딩 박스 앙상블 기법 WBF를 통해 폐색이 짙은 조호환경 영상 데이터 내에 객체 탐지 영역 정확도 향상 방법을 연구하였다.

A Motion Correspondence Algorithm based on Point Series Similarity (점 계열 유사도에 기반한 모션 대응 알고리즘)

  • Eom, Ki-Yeol;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.305-310
    • /
    • 2010
  • In this paper, we propose a heuristic algorithm for motion correspondence based on a point series similarity. A point series is a sequence of points which are sorted in the ascending order of their x-coordinate values. The proposed algorithm clusters the points of a previous frame based on their local adjacency. For each group, we construct several potential point series by permuting the points in it, each of which is compared to the point series of the following frame in order to match the set of points through their similarity based on a proximity constraint. The longest common subsequence between two point series is used as global information to resolve the local ambiguity. Experimental results show an accuracy of more than 90% on two image sequences from the PETS 2009 and the CAVIAR data sets.

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.

A Study on Tangible Gesture Interface Prototype Development of the Quiz Game (퀴즈게임의 체감형 제스처 인터페이스 프로토타입 개발)

  • Ahn, Jung-Ho;Ko, Jae-Pil
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.235-245
    • /
    • 2012
  • This paper introduce a quiz game contents based on gesture interface. We analyzed the off-line quiz games, extracted its presiding components, and digitalized them so that the proposed game contents is able to substitute for the off-line quiz games. We used the Kinect camera to obtain the depth images and performed the preprocessing including vertical human segmentation, head detection and tracking and hand detection, and gesture recognition for hand-up, hand vertical movement, fist shape, pass and fist-and-attraction. Especially, we defined the interface gestures designed as a metaphor for natural gestures in real world so that users are able to feel abstract concept of movement, selection and confirmation tangibly. Compared to our previous work, we added the card compensation process for completeness, improved the vertical hand movement and the fist shape recognition methods for the example selection and presented an organized test to measure the recognition performance. The implemented quiz application program was tested in real time and showed very satisfactory gesture recognition results.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

Feature Point Filtering Method Based on CS-RANSAC for Efficient Planar Homography Estimating (효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법)

  • Kim, Dae-Woo;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.307-312
    • /
    • 2016
  • Markerless tracking for augmented reality using Homography can augment virtual objects correctly and naturally on live view of real-world environment by using correct pose and direction of camera. The RANSAC algorithm is widely used for estimating Homography. CS-RANSAC algorithm is one of the novel algorithm which cooperates a constraint satisfaction problem(CSP) into RANSAC algorithm for increasing accuracy and decreasing processing time. However, CS-RANSAC algorithm can be degraded performance of calculating Homography that is caused by selecting feature points which estimate low accuracy Homography in the sampling step. In this paper, we propose feature point filtering method based on CS-RANSAC for efficient planar Homography estimating the proposed algorithm evaluate which feature points estimate high accuracy Homography for removing unnecessary feature point from the next sampling step using Symmetric Transfer Error to increase accuracy and decrease processing time. To evaluate our proposed method we have compared our algorithm with the bagic CS-RANSAC algorithm, and basic RANSAC algorithm in terms of processing time, error rate(Symmetric Transfer Error), and inlier rate. The experiment shows that the proposed method produces 5% decrease in processing time, 14% decrease in Symmetric Transfer Error, and higher accurate homography by comparing the basic CS-RANSAC algorithm.

Image Distortion Compensation for Improved Gait Recognition (보행 인식 시스템 성능 개선을 위한 영상 왜곡 보정 기법)

  • Jeon, Ji-Hye;Kim, Dae-Hee;Yang, Yoon-Gi;Paik, Joon-Ki;Lee, Chang-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.97-107
    • /
    • 2009
  • In image-based gait recognition systems, physical factors, such as the camera angle and the lens distortion, and environmental factors such as illumination determines the performance of recognition. In this paper we present a robust gait recognition method by compensating various types of image distortions. The proposed method is compared with existing gait recognition algorithm with consideration of both physical and environmental distortion factors in the input image. More specifically, we first present an efficient compensation algorithm of image distortion by using the projective transform, and test the feasibility of the proposed algorithm by comparing the recognition performances with and without the compensation process. Proposed method gives universal gait data which is invariant to both distance and environment. Gained data improved gait recognition rate about 41.5% in indoor image and about 55.5% in outdoor image. Proposed method can be used effectively in database(DB) construction, searching and tracking of specific objects.

Augmented Reality Game Interface Using Hand Gestures Tracking (사용자 손동작 추적에 기반한 증강현실 게임 인터페이스)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 2006
  • Recently, Many 3D augmented reality games that provide strengthened immersive have appeared in the 3D game environment. In this article, we describe a barehanded interaction method based on human hand gestures for augmented reality games. First, feature points are extracted from input video streams. Point features are tracked and motion of moving objects are computed. The shape of the motion trajectories are used to determine whether the motion is intended gestures. A long smooth trajectory toward one of virtual objects or menus is classified as an intended gesture and the corresponding action is invoked. To prove the validity of the proposed method, we implemented two simple augmented reality applications: a gesture-based music player and a virtual basketball game. In the music player, several menu icons are displayed on the top of the screen and an user can activate a menu by hand gestures. In the virtual basketball game, a virtual ball is bouncing in a virtual cube space and the real video stream is shown in the background. An user can hit the virtual ball with his hand gestures. From the experiments for three untrained users, it is shown that the accuracy of menu activation according to the intended gestures is 94% for normal speed gestures and 84% for fast and abrupt gestures.

  • PDF