• Title/Summary/Keyword: 영상기반 딥러닝

Search Result 744, Processing Time 0.025 seconds

Object Recognition in 360° Streaming Video (360° 스트리밍 영상에서의 객체 인식 연구)

  • Yun, Jeongrok;Chun, Sungkuk;Kim, Hoemin;Kim, Un Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.317-318
    • /
    • 2019
  • 가상/증강현실로 대표되는 공간정보 기반 실감형 콘텐츠에 대한 관심이 증대되면서 객체인식 등의 지능형 공간인지 기술에 대한 연구가 활발히 진행되고 있다. 특히 HMD등의 영상 시각화 장치의 발달 및 5G 통신기술의 출현으로 인해 실시간 대용량 영상정보의 송, 수신 및 가시화 처리 기술의 기반이 구축됨에 따라, $360^{\circ}$ 스트리밍 영상정보 처리와 같은 고자유도 콘텐츠를 위한 관련 연구의 필요성이 증대되고 있다. 하지만 지능형 영상정보 처리의 대표적 연구인 딥 러닝(Deep Learning) 기반 객체 인식 기술의 경우 대부분 일반적인 평면 영상(Planar Image)에 대한 처리를 다루고 있고, 파노라마 영상(Panorama Image) 특히, $360^{\circ}$ 스트리밍 영상 처리를 위한 연구는 미비한 상황이다. 본 논문에서는 딥 러닝을 이용하여 $360^{\circ}$ 스트리밍 영상에서의 객체인식 연구 방법에 대해 서술한다. 이를 위해 $360^{\circ}$ 카메라 영상에서 딥 러닝을 위한 학습 데이터를 획득하고, 실시간 객체 인식이 가능한 YOLO(You Only Look Once)기법을 이용하여 학습을 한다. 실험 결과에서는 학습 데이터를 이용하여 $360^{\circ}$영상에서 객체 인식 결과와, 학습 횟수에 따른 객체 인식에 대한 결과를 보여준다.

  • PDF

A study on the Performance Analysis of Super-Resolution Algorithms by the activation functions using Jetson Nano (젯슨 나노 기반 활성 함수에 따른 초해상화 알고리즘 성능 분석 연구)

  • Lim, Jae-Yoon;Kim, Yu-Min;Kim, Yongwoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.691-694
    • /
    • 2022
  • 최근 고해상도 영상이 필요하게 되었으며, 저해상도 영상을 고해상도 영상으로 변환하는 딥러닝 기반의 초해상도 알고리즘에 대한 연구가 활발히 진행되고 있다. 그럼에도 불구하고 딥러닝 기반의 초해상도 알고리즘은 하드웨어의 한계로 인해 임베디드 시스템에서 실행시간이 느린 단점이 있다. 본 논문에서는 심층신경망 기반의 초해상도 알고리즘의 네트워크 구조를 제시하고 다양한 활성화 함수에 따른 화질 및 실행시간 성능을 분석한다. 실험 결과, 젯슨 나노보드의 다양한 활성화 함수 중 화질과 실행 시간의 관계에서 도출한 최적의 활성화 함수가 PReLU 함수임을 확인하였다.

Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation (콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발)

  • Nam, Woo-Suk;Jung, Hyunjun;Park, Kyung-Han;Kim, Cheol-Min;Kim, Gyu-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members.

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

A Study on Inundation Detection Using Convolutional Neural Network Based on Deep Learning (딥러닝 기반 합성곱 신경망을 이용한 자동 침수감지 기술에 관한 연구)

  • Kim, Gilho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.323-323
    • /
    • 2021
  • 본 연구는 국지적으로 발생하는 침수상황을 빠르게 감지하고 대처하기 위하여 다채널 실시간 CCTV 영상을 무인 모니터링하고 자동으로 감지하기 위한 영상분석 기술을 개발하는 것을 목적으로 한다. 이에 다양한 공간에서 촬영된 학습 및 검증을 위한 데이터를 구축하였고, 대표적인 CNN 계열 분류모델을 중심으로 딥러닝 모델을 개발하였다. 5가지 CNN 알고리즘으로 시험결과, ResNet-50 모델의 분류 정확도가 87.5%로 가장 우수한 성능을 보였다. 공간적으로는 실외, 도로공간에서 82% 이상의 분류성능을 보였고, 실내공간에서는 양질의 학습데이터 부족으로 분류성능이 떨어지는 것으로 나타났다. 본 연구성과는 지능형 CCTV 기술 발전과 방재 목적의 다목적 활용으로, 향후 홍수피해 저감을 위한 보조적인 수단으로 활용되길 기대한다.

  • PDF

딥러닝 기반 비디오 프레임 보간 기술 연구 동향

  • Heo, Jin-Gang;Yun, Gi-Hwan;Kim, Seong-Je;Jeong, Jin-U
    • Broadcasting and Media Magazine
    • /
    • v.27 no.2
    • /
    • pp.51-61
    • /
    • 2022
  • 비디오 프레임 보간 기술은 연속되어 있는 두 개의 프레임 사이의 중간 프레임을 생성하는 기술로 비디오의 프레임율을 늘리거나 슬로우 모션 영상을 생성 시 사용된다. 최근 딥러닝 기술의 발전에 따라 다양한 알고리즘의 비디오 프레임 보간 기술이 연구되고 있다. 본 고에서는 이러한 기알고리즘들을 커널 기반 방식과 플로우 기반 방식으로 분류하고, 각 범주에 속하는 대표적인 알고리즘들의 특징 및 한계점에 대해 살펴본다.

Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective (유방촬영술에서 인공지능의 적용: 알고리즘 개발 및 평가 관점)

  • Ki Hwan Kim;Sang Hyup Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.12-28
    • /
    • 2021
  • Mammography is the primary imaging modality for breast cancer detection; however, a high level of expertise is needed for its interpretation. To overcome this difficulty, artificial intelligence (AI) algorithms for breast cancer detection have recently been investigated. In this review, we describe the characteristics of AI algorithms compared to conventional computer-aided diagnosis software and share our thoughts on the best methods to develop and validate the algorithms. Additionally, several AI algorithms have introduced for triaging screening mammograms, breast density assessment, and prediction of breast cancer risk have been introduced. Finally, we emphasize the need for interest and guidance from radiologists regarding AI research in mammography, considering the possibility that AI will be introduced shortly into clinical practice.

Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image (기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측)

  • Jae-Jung Kim;Yong-Hun You;Chang-Bok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.569-575
    • /
    • 2021
  • Deep learning shows differences in prediction performance depending on data quality and model. This study uses various input data and multiple deep learning models to build an optimal deep learning model for predicting solar radiation, which has the most influence on power generation prediction. did. As the input data, the weather data of the Korea Meteorological Administration and the clairvoyant meteorological image were used by segmenting the image of the Korea Meteorological Agency. , comparative evaluation, and predicting solar radiation by constructing multiple deep learning models connecting the models with the best error rate in each model. As an experimental result, the RMSE of model A, which is a multiple deep learning model, was 0.0637, the RMSE of model B was 0.07062, and the RMSE of model C was 0.06052, so the error rate of model A and model C was better than that of a single model. In this study, the model that connected two or more models through experiments showed improved prediction rates and stable learning results.

Object Detection of Infrared Thermal Image Based on Single Shot Multibox Detector Model for Embedded System (임베디드 시스템용 Single Shot Multibox Detector Model 기반 적외선 열화상 영상의 객체검출)

  • NA, Woong Hwan;Kim, Eung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.9-12
    • /
    • 2019
  • 지난 수 년 동안 계속해서 일반 실상 카메라를 이용한 영상분석기술에 대한 연구가 활발히 진행되고 있다. 최근에는 딥러닝 기술을 적용한 지능형 영상분석기술로 발전해 왔으며 국방기지방호, CCTV, 사용자 얼굴인식, 머신비전, 자동차, 드론 산업이 활성화되면서 많은 시너지를 효과를 일으키고 있다. 그러나 어두운 밤과 안개, 날씨, 연기 등 다양한 여건에서 따라서 카메라의 영상분석 정확성 감소와 오류가 수반될 수 있으며 일반적으로 딥러닝 기술을 활용하기 위해서는 고사양의 GPU를 필요로 하기 때문에 다른 추가적인 시스템이 요구된다. 이에 본 연구에서는 열적외선 영상의 객체 검출에 적용하기 위해 SSD(Single Shot MultiBox Detector) 기반의 경량적인 MobilNet 네트워크로 재구성하여, 모바일 기기 등 낮은 사양의 낮은 임베디드 시스템에서도 활용 할 수 있는 방법을 제안한다. 모의 실험결과 제안된 방식의 모델은 적외선 열화상 카메라에서 객체검출과 학습시간이 줄어든 것을 확인 할 수 있었다.

  • PDF

Deep-learning based Object Detection in Thermal Video Using Compressed-Domain Information (열영상에서 압축 도메인 정보를 이용한 딥러닝 기반 객체 탐지 방법)

  • Byeon, JooHyung;Nam, Gunook;Park, Jangsoo;Lee, Jongseok;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.160-162
    • /
    • 2018
  • 본 논문에서는 압축 영역에서 열 영상을 이용한 딥러닝 기반의 객체 검출 방법을 제안한다. 비디오 압축 표준인 High Efficiency Video Coding(HEVC)를 이용하여 부보화된 비트스트림으로부터 Intra Prediction Mode(IPM), Prediction Unit Size(PUS), Transform Unit Size(TUS)를 추출하고 3 채널 영상으로 변환하고 객체 검출 네트워크인 YOLO 에 입력으로 넣어주어 최종적으로 객체의 위치 및 객체의 종류를 예측한다. 실험결과로써 복원된 열 영상과 검출된 결과를 주관적으로 보여줌으로써 압축영역에서 열영상을 이용한 객체 검출이 가능함을 보인다.

  • PDF