DOI QR코드

DOI QR Code

Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective

유방촬영술에서 인공지능의 적용: 알고리즘 개발 및 평가 관점

  • Received : 2020.12.16
  • Accepted : 2021.01.26
  • Published : 2021.01.01

Abstract

Mammography is the primary imaging modality for breast cancer detection; however, a high level of expertise is needed for its interpretation. To overcome this difficulty, artificial intelligence (AI) algorithms for breast cancer detection have recently been investigated. In this review, we describe the characteristics of AI algorithms compared to conventional computer-aided diagnosis software and share our thoughts on the best methods to develop and validate the algorithms. Additionally, several AI algorithms have introduced for triaging screening mammograms, breast density assessment, and prediction of breast cancer risk have been introduced. Finally, we emphasize the need for interest and guidance from radiologists regarding AI research in mammography, considering the possibility that AI will be introduced shortly into clinical practice.

유방촬영술은 유방암 검진 및 진단을 위한 기본적인 영상 검사이지만, 판독이 어려우며 높은 숙련도를 필요로 한다고 잘 알려져 있다. 이러한 어려움을 극복하기 위해 최근 몇 년 사이에 인공지능을 이용한 유방암 검출 알고리즘들이 활발히 연구되고 있다. 본 종설에서 저자는 고전적인 computer-aided detection 소프트웨어 대비 최근 많이 사용되는 딥러닝의 특징을 알아보고, 딥러닝 알고리즘의 개발 방법과 임상적 검증 방법에 대해서 기술하였다. 또한 딥러닝 기반의 검진 유방촬영술의 판독 방법 분류, 유방 치밀도 평가, 그리고 유방암 위험도 예측 모델 등을 위한 딥러닝 연구들도 소개하였다. 마지막으로 유방촬영술 관련 인공지능 기술들에 대한 영상의학과 전문의의 관심과 의견의 필요성을 기술하였다.

Keywords

References

  1. International Agency for Research on Cancer. GCO Global Cancer Observatory. Available at. https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. Published 2018. Accessed Jan 20, 2020
  2. Hong S, Won YJ, Park YR, Jung KW, Kong HJ, Lee ES; Community of Population-Based Regional Cancer Registries. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2017. Cancer Res Treat 2020;52:335-350
  3. Ministry of Health and Welfare. 2017 cancer registration statistics. Available at. https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2770. Accessed Nov 29, 2020
  4. Korean Statistical Information Service. Health examination statistics, 2018 status of the number of cancer screening examinations by age and gender. Available at. https://kosis.kr/statHtml/statHtml.do?orgId=350&tblId=DT_35007_N010&conn_path=I2. Published 2020. Accessed Nov 29, 2020
  5. Lee K, Kim H, Lee JH, Jeong H, Shin SA, Han T, et al. Retrospective observation on contribution and limitations of screening for breast cancer with mammography in Korea: detection rate of breast cancer and incidence rate of interval cancer of the breast. BMC Womens Health 2016;16:72
  6. Lehman CD, Arao RF, Sprague BL, Lee JM, Buist DS, Kerlikowske K, et al. National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology 2017;283:49-58
  7. Majid AS, de Paredes ES, Doherty RD, Sharma NR, Salvador X. Missed breast carcinoma: pitfalls and pearls. Radiographics 2003;23:881-895
  8. Ministry of Health and Welfare National Cancer Center. Second revision of the quality guidelines of breast cancer screening. Goyang: Ministry of Health and Welfare National Cancer Center 2018
  9. Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys 2008;35:5799-5820
  10. Freer TW, Ulissey MJ. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology 2001;220:781-786
  11. Warren Burhenne LJ, Wood SA, D'Orsi CJ, Feig SA, Kopans DB, O'Shaughnessy KF, et al. Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology 2000;215:554-562
  12. Oliver A, Freixenet J, Marti J, Perez E, Pont J, Denton ER, et al. A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 2010;14:87-110
  13. Masotti M, Lanconelli N, Campanini R. Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features. Med Phys 2009;36:311-316
  14. Hupse R, Samulski M, Lobbes M, den Heeten A, Imhof-Tas MW, Beijerinck D, et al. Standalone computer-aided detection compared to radiologists' performance for the detection of mammographic masses. Eur Radiol 2013;23:93-100
  15. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 2015;175:1828-1837
  16. Fenton JJ, Abraham L, Taplin SH, Geller BM, Carney PA, D'Orsi C, et al. Effectiveness of computer-aided detection in community mammography practice. J Natl Cancer Inst 2011;103:1152-1161
  17. Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D'Orsi C, et al. Influence of computer-aided detection on performance of screening mammography. N Engl J Med 2007;356:1399-1409
  18. Ikeda DM, Birdwell RL, O'Shaughnessy KF, Sickles EA, Brenner RJ. Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography. Radiology 2004;230:811-819
  19. American College of Radiology. ACR BI-RADS atlas: breast imaging reporting and data system. 5th ed. Reston: American College of Radiology 2013
  20. Mercado CL. BI-RADS update. Radiol Clin North Am 2014;52:481-487
  21. Rao AA, Feneis J, Lalonde C, Ojeda-Fournier H. A pictorial review of changes in the BI-RADS fifth edition. Radiographics 2016;36:623-639
  22. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM 2017;60:84-90
  23. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA: IEEE; 2016:770-778
  24. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv preprint 2014;arXiv:1409.1556
  25. Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends. Med Image Anal 2018;47:45-67
  26. Rabidas R, Midya A, Chakraborty J. Neighborhood structural similarity mapping for the classification of masses in mammograms. IEEE J Biomed Health Inform 2018;22:826-834
  27. Oyelade ON, Ezugwu AES. A state-of-the-art survey on deep learning methods for detection of architectural distortion from digital mammography. IEEE Access 2020;8:148644-148676
  28. Samala RK, Heang-Ping Chan, Hadjiiski L, Helvie MA, Richter CD, Cha KH. Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets. IEEE Trans Med Imaging 2019;38:686-696
  29. Sun L, Wang J, Hu Z, Xu Y, Cui Z. Multi-view convolutional neural networks for mammographic image classification. IEEE Access 2019;7:126273-126282
  30. Park SH. Artificial intelligence in medicine: beginner's guide. J Korean Soc Radiol 2018;78:301-308
  31. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809
  32. Park SH, Choi J, Byeon JS. Key principles of clinical validation, device approval, and insurance coverage decisions of artificial intelligence. J Korean Med Assoc 2020;63:696-708
  33. Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: what is overfitting? Clin Imaging 2020;65:96-99
  34. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. Practical guidance on artificial intelligence for health-care data. Lancet Digit Health 2019;1:e157-e159
  35. Wang X, Liang G, Zhang Y, Blanton H, Bessinger Z, Jacobs N. Inconsistent performance of deep learning models on mammogram classification. J Am Coll Radiol 2020;17:796-803
  36. Dontchos BN, Yala A, Barzilay R, Xiang J, Lehman CD. External validation of a deep learning model for predicting mammographic breast density in routine clinical practice. Acad Radiol 2020 [in press] doi: https://doi.org/10.1016/j.acra.2019.12.012
  37. Yamaguchi T, Inoue K, Tsunoda H, Uematsu T, Shinohara N, Mukai H. A deep learning-based automated diagnostic system for classifying mammographic lesions. Medicine (Baltimore) 2020;99:e20977
  38. Milea D, Singhal S, Najjar RP. Artificial intelligence for detection of optic disc abnormalities. Curr Opin Neurol 2020;33:106-110
  39. Leconte I, Feger C, Galant C, Berliere M, Berg BV, D'Hoore W, et al. Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. AJR Am J Roentgenol 2003;180:1675-1679
  40. U.S. Food and Drug Administration. Computer-assisted detection devices applied to radiology images and radiology device data - premarket notification [510(k)] submissions. Silver Spring: Food and Drug Administration 2012
  41. Retson TA, Eghtedari M. Computer-aided detection/diagnosis in breast imaging: a focus on the evolving FDA regulations for using software as a medical device. Curr Radiol Rep 2020;8:1-7
  42. Dembrower K, Wahlin E, Liu Y, Salim M, Smith K, Lindholm P, et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health 2020;2:e468-e474
  43. Salim M, Wahlin E, Dembrower K, Azavedo E, Foukakis T, Liu Y, et al. External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms. JAMA Oncol 2020;6:1581-1588
  44. Kooi T, Litjens G, van Ginneken B, Gubern-Merida A, Sanchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017;35:303-312
  45. Rodriguez-Ruiz A, Krupinski E, Mordang JJ, Schilling K, Heywang-Kobrunner SH, Sechopoulos I, et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 2019;290:305-314
  46. Kim HE, Kim HH, Han BK, Kim KH, Han K, Nam H, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health 2020; 2:e138-e148
  47. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature 2020;577:89-94
  48. Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, et al. Deep neural networks improve radiologists' performance in breast cancer screening. IEEE Trans Med Imaging 2020;39:1184-1194
  49. Conant EF, Toledano AY, Periaswamy S, Fotin SV, Go J, Boatsman JE, et al. Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell 2019;1:e180096
  50. Pacile S, Lopez J, Chone P, Bertinotti T, Grouin JM, Fillard P. Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool. Radiology: Artificial Intelligence 2020;2:e190208
  51. Balleyguier C, Arfi-Rouche J, Levy L, Toubiana PR, Cohen-Scali F, Toledano AY, et al. Improving digital breast tomosynthesis reading time: a pilot multi-reader, multi-case study using concurrent Computer-Aided Detection (CAD). Eur J Radiol 2017;97:83-89
  52. Chae EY, Kim HH, Jeong JW, Chae SH, Lee S, Choi YW. Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis. Eur Radiol 2019;29:2518-2525
  53. Lee EH, Kim KW, Kim YJ, Shin DR, Park YM, Lim HS, et al. Performance of screening mammography: a report of the alliance for breast cancer screening in Korea. Korean J Radiol 2016;17:489-496
  54. Gulland A. Staff shortages are putting UK breast cancer screening "at risk," survey finds. BMJ 2016;353:i2350
  55. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G, et al. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol 2019;29:4825-4832
  56. Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A deep learning model to triage screening mammograms: a simulation study. Radiology 2019;293:38-46
  57. Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 2003;138:168-175
  58. Lehman CD, Yala A, Schuster T, Dontchos B, Bahl M, Swanson K, et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology 2019;290:52-58
  59. Mohamed AA, Berg WA, Peng H, Luo Y, Jankowitz RC, Wu S. A deep learning method for classifying mammographic breast density categories. Med Phys 2018;45:314-321
  60. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019;292:60-66
  61. Dembrower K, Liu Y, Azizpour H, Eklund M, Smith K, Lindholm P, et al. Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology 2020;294:265-272
  62. Eriksson M, Czene K, Pawitan Y, Leifland K, Darabi H, Hall P. A clinical model for identifying the short-term risk of breast cancer. Breast Cancer Res 2017;19:29