• Title/Summary/Keyword: 영상검출기

Search Result 846, Processing Time 0.03 seconds

A study high speed remote sensing image registration using deep learning-based keypoints filtering (딥러닝 기반 특징점 필터링을 이용한 원격 탐사 영상 정합 고속화 연구)

  • Lee, Wooju;Sim, Donggyu;Oh, Seoung-jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.97-99
    • /
    • 2021
  • 본 논문에서는 딥러닝 기반 특징점 필터링 방법을 이용한 원격 탐사 영상에 대한 영상 정합 (Image Registration) 고속화 방법을 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 인공구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 인공구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. 딥러닝 기반 특징점 필터링은 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 인공구조물의 경계와 인접한 특징점을 보존하고, 축소한 영상을 사용하며, 영상 분할(Image Segmentation) 방법의 결과에서 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라 냄으로써 정합 속도와 정확도를 향상시킨다. 영상 정합 고속화 방법을 의 성능을 검증하기 위하여 아리랑 3 호 위성 원격 탐사 영상을 사용하여 기존 특징점 추출 방법과 속도와 정확도를 비교하였다. 딥러닝 기반 영상 정합 방법을 기준으로 하여 비교하였을 때 특징점의 수를 약 82% 감소시키면서 속도를 약 9.17 배 향상시켰지만 정확도가 0.985 에서 0.855 으로 저하되었다.

  • PDF

The morphological edge detector by using stack filters (스택여파기를 이용한 형태학적 영상 윤곽선 검출기)

  • Yoo, Ji-Sang;Kim, Sun-Yong;Moon, Gyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1696-1705
    • /
    • 1996
  • The theory of stack filtering, which is a generalization of median filtering, is used to the detection of intensity edges in noisey images. The proposed approach, called the Difference of Estimates(DoE) approach, is a new formulation of a morphological scheme which has been very sensitive to impulse noise. In this approach, stack filters are applied to a noisy image to obtain local estimates of the dilated and eroded versions of the noise-free image. Thresholding the difference between these two estimates yields the binary edge map. We find that this approach yields results comparable to those obtained with the Canny operator for images with additive Gaussian noise, burt works much better when the noise is impulsive.

  • PDF

Edge Detector based on Linear Discriminant Analysis for Lane Detection (차선검출 위한 선형 판별 분석 기법 기반의 경계선 추출 방법)

  • Yoo, Hun-Jae;Yang, Uk-Il;Kang, Min-Sung;Choi, Jae-Seob;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.70-73
    • /
    • 2010
  • 최근 IT 기술이 융합된 지능형 자동차 기술에 대한 관심이 높아짐에 따라 이에 대한 연구가 활발히 진행되고 있다. 차선 검출은 지능형 자동차의 주요 과제인 첨단 안전자동차 기술의 핵심적인 부분으로 국내외에서 다양한 방법들에 대한 연구가 진행되었다. 차량의 안전을 향상시키기 위해서는 충분한 제동거리 확보가 가능한 거리까지 정확하고 빠른 차선 검출이 이루어져야 한다. 기존의 경계선 검출기반 차선 검출은 소실점 근처에서 경계선 검출이 이루어지지 않았다. 이는 차선과 도로의 색이 잘 구분되지 않는 채널을 사용하는 문제에서 기인한다. 따라서 본 논문에서는 선형 판별 분석 기법을 이용하여 차선과 도로 색을 가장 잘 구분할 수 있는 RGB 가중치를 계산하여 이로부터 projection 영상을 만들고, 변환한 영상에서 경계선 검출을 수행함으로써 보다 정확한 경계선 검출 결과를 얻는 방법을 제안한다. 제안한 방법으로 얻은 영상과 기존의 흑백 영상에 동일한 경계선 검출기를 적용하여 성능을 비교하고, 이를 적용한 차선검출 실험결과를 제시한다.

  • PDF

Vehicle Detection Scheme Based on a Boosting Classifier with Histogram of Oriented Gradient (HOG) Features and Image Segmentation] (HOG 특징 및 영상분할을 이용한 부스팅분류 기반 자동차 검출 기법)

  • Choi, Mi-Soon;Lee, Jeong-Hwan;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.955-961
    • /
    • 2010
  • In this paper, we describe a study of a vehicle detection method based on a Boosting Classifier which uses Histogram of Oriented Gradient (HOG) features and Image Segmentation techniques. An input image is segmented by means of a split and merge algorithm. Then, the two largest segmented regions are removed in order to reduce the search region and speed up processing time. The HOG features are then calculated for each pixel in the search region. In order to detect the vehicle region we used the AdaBoost (adaptive boost) method, which is well known for classifying samples with two classes. To evaluate the performance of the proposed method, 537 training images were used to train and learn the classifier, followed by 500 non-training images to provide the recognition rate. From these experiments we were able to detect the proper image 98.34% of the time for the 500 non-training images. In conclusion, the proposed method can be used for detecting the location of a vehicle in an intelligent vehicle control system.

A Study on the Comparison of Detected Vein Images by NIR LED Quantity of Vein Detector (정맥검출기의 NIR LED 수량에 따른 검출된 정맥 이미지 비교에 관한 연구)

  • Jae-Hyun, Jo;Jin-Hyoung, Jeong;Seung-Hun, Kim;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.485-491
    • /
    • 2022
  • Intravenous injection is the most frequent invasive treatment for inpatients and is widely used for parenteral nutrition administration and blood products, and more than 1 billion procedures are used for peripheral catheter insertion, blood collection, and other IV therapy per year. Intravenous injection is one of the difficult procedures to be performed only by trained nurses with intravenous injection training, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Accordingly, studies on auxiliary equipment capable of visualizing the vein structure of the back of the hand or arm are being published to reduce errors during intravenous injection. This study is a study on the performance difference according to the number of LEDs irradiating the 850nm wavelength band on a vein detector that visualizes the vein during intravenous injection. Four LED PCBs were produced by attaching NIR filters to CCD and CMOS camera lenses irradiated on the skin to acquire images, sharpen the acquired images using image processing algorithms, and project the sharpened images onto the skin. After that, each PCB was attached to the front end of the vein detector to detect the vein image and create a performance comparison questionnaire based on the vein image obtained for performance evaluation. The survey was conducted on 20 nurses working at K Hospital.

Image Edge Detector Based on Analog Correlator and Neighbor Pixels (아날로그 상관기와 인접픽셀 기반의 영상 윤곽선 검출기)

  • Lee, Sang-Jin;Oh, Kwang-Seok;Nam, Min-Ho;Cho, Kyoungrok
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents a simplified hardware based edge detection circuit which is based on an analog correlator combining with the neighbor pixels in CMOS image sensor. A pixel element of the edge detector consists of an active pixel sensor and an analog correlator circuit which connects two neighbor pixels. The edge detector shares a comparator on each column that the comparator decides an edge of the target pixel with an adjustable reference voltage. The circuit detects image edge from CIS directly that reduces area and power consumption 4 times and 20%, respectively, compared with the previous works. And also it has advantage to regulate sensitivity of the edge detection because the threshold value is able to control externally. The fabricated chip has 34% of fill factor and 0.9 ${\mu}W$ of power per a pixel under 0.18 ${\mu}m$ CMOS technology.

Detection of Artificial Caption using Temporal and Spatial Information in Video (시·공간 정보를 이용한 동영상의 인공 캡션 검출)

  • Joo, SungIl;Weon, SunHee;Choi, HyungIl
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.115-126
    • /
    • 2012
  • The artificial captions appearing in videos include information that relates to the videos. In order to obtain the information carried by captions, many methods for caption extraction from videos have been studied. Most traditional methods of detecting caption region have used one frame. However video include not only spatial information but also temporal information. So we propose a method of detection caption region using temporal and spatial information. First, we make improved Text-Appearance-Map and detect continuous candidate regions through matching between candidate-regions. Second, we detect disappearing captions using disappearance test in candidate regions. In case of captions disappear, the caption regions are decided by a merging process which use temporal and spatial information. Final, we decide final caption regions through ANNs using edge direction histograms for verification. Our proposed method was experienced on many kinds of captions with a variety of sizes, shapes, positions and the experiment result was evaluated through Recall and Precision.

Multiple Feature Representation for Efficient Cascaded Face Detection (효과적인 계단식 얼굴 검출을 위한 다중 특징 추출)

  • 소형준;남미영;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF

Median Filtering Detection using Latent Growth Modeling (잠재성장모델링을 이용한 미디언 필터링 검출)

  • Rhee, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • In recent times, the median filtering (MF) detector as a forensic tool for the recovery of forgery images' processing history has concerned broad interest. For the classification of MF image, MF detector should be designed with smaller feature set and higher detection ratio. This paper presents a novel method for the detection of MF in altered images. It is transformed from BMP to several kinds of MF image by the median window size. The difference distribution values are computed according to the window sizes and then the values construct the feature set same as the MF window size. For the MF detector, the feature set transformed to the model specification which is computed using latent growth modeling (LGM). Through experiments, the test image is classified by the discriminant into two classes: the true positive (TP) and the false negative (FN). It confirms that the proposed algorithm is to be outstanding performance when the minimum distance average is 0.119 in the confusion of TP and FN for the effectivity of classification.