• Title/Summary/Keyword: 염화물 침투깊이

Search Result 49, Processing Time 0.022 seconds

Experimental Study on the Penetration Depth and Concentration of Corrosion Inhibitor Using Press-in Method Into the Inside of Concrete (콘크리트 내부로의 압입공법을 사용한 방청제의 침투깊이 및 농도에 관한 실험적 연구)

  • Cho, Hyeong-Kyu;Yoo, Jo-Hyeong;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.160-168
    • /
    • 2009
  • After steel bar was corroded it removes concrete contaminated, it does steel bar corrosion protection, repairing method and corrosion inhibitor spreading method are difficult to secure corrosion protection performance. Accordingly, in this research before Research and Development to penetrate corrosion inhibitor to high pressure by steel bar position, it measures penetration depth through corrosion inhibitor high pressure penetration experiment and amount of nitrite by position and then it predicts penetration depth in accordance with water-cement ratio, pressure, pressure time and it computed water-cement ratio, pressure, pressure time to be more than 0.6 mol ratio of chloride ion and nitrite to have outstanding corrosion protection performance. As a result of experiment, water-cement ratio gives the biggest influence to penetration of corrosion inhibitor and also the more depth of specimen becomes deep, concentration of penetrated corrosion inhibitor does not equal and becomes low.

Influence of Painting Materials based on Wasted Oil and Applying Timing on Carbonation and Chloride Resistances of High Volume SCM Concrete (폐유지류를 중심으로 한 도포제 종류 및 도포시기 변화가 혼화재 다량치환 콘크리트의 탄산화 및 염해저항성에 미치는 영향)

  • Han, Cheon-Goo;Choi, Young-Doo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • In this research, the influence of painting materials and applying timing on carbonation and chloride resistances of high volume SCMs concrete was evaluated. As a durability improving method, comparative tests were conducted with painting materials of ERCO (emulsified refined cooking oil), RCO (refined cooking oil), WR (water repellent agent), and ERCO + WR and with painting timings of right after demolding, and 28 days after the wet curing. From the experiment results, in the case of carbonation and chloride resistance, the carbonation depth and chloride penetration depth were decreased when the painting materials were applied in 28 days of wet curing. Additionally, for painting materials, with the order of ERCO, RCO, ERCO+WR, and WR, the carbonation and chloride penentration was delayed. Hence it is considered that ERCO shows the most favorable performance of resistance against carbonation and chloride penetration.

A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition (인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구)

  • Park, Sang-Soon;Jeong, Ji-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • Steel reinforcement buried in concrete structure in submerged zone does not easily become corroded due to lack of dissolved oxygen. For that reason, accelerated corrosion test in submerged state is performed with an electrochemical method, which is not suitable for actual corrosion mechanism and makes it difficult to find relevance with long-term behavior. In this study, accelerated corrosion test was performed with the temperature and chloride concentration as main variables in order to establish a method for accelerated corrosion test in submerged zone. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. The accelerated corrosion test result showed that temperature had the most dominant influence. To determine the chloride content, chloride concentration by depth in the test sample was measured. With the same conditions, chloride penetration interpretation was performed by DuCOM, a FEM durability interpretation program. Also, a test was performed to measure dissolved oxygen according to soaking conditions of artificial seawater, which was used for verifying the validity of the accelerated corrosion test result.

Calculation of the Surface Chloride and Estimation for the Soundness of Embedded Rebar by Using Colorimetric Distinction Method (비색판별법을 이용한 콘크리트의 표면염화물량 산정 및 매립철근의 건전도 평가)

  • Lee, Mun-Hwan;Lee, Jin-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.794-801
    • /
    • 2003
  • As it is important to measure the degree of the deterioration and predict service life caused by chloride in concrete structure the methods of measuring chloride in the concrete is raised important problems. This study is to set a new standard for using of the colorimetric method through grasping the character of the colorimetric distinction method, and measuring the chloride content at the place discolored. Also, to predict chloride content around embeded bar and time reaching limit chloride concentration through measuring the chloride content of concrete surface by colorimetric distinction method and this study presents the new concept of concrete degradation and diagnosis of the durability by salt damage. According the results, it is possible to use colorimetric distinction method as simplified measurement to measure the fixed quantity of the chloride concentration. What is more, it would make calculation of concrete surface chloride had a wide fluctuation at the general environment extended. Also, it would be make estimating durability of reinforced concrete structures applied to the basic data.

Durability Evaluation of Inorganic-Impregnated Concrete Exposed to Long-Term Chloride Exposure Test (무기계 침투제를 적용한 콘크리트의 장기폭로실험을 통한 염해 내구성 평가)

  • Kwon, Seung-Jun;Park, Sang-Soon;Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • The repair technique using surface impregnation of reactive compound is so effective for deteriorated concrete structures that many researches are recently focused on these works. Particularly, inorganic impregnant is regarded as ecofriendly material because there is no air-pollution during manufacturing process as well as field coating works. Furthermore, The delamination between old concrete and impregnated surface does not occur, resulting from different material characteristics. In order to evaluate the durability performance of surface-impregnated concrete, durability evaluation through the long-term exposure tests is significant, however, experiments are usually limited to the temporary and qualitative laboratorial scope. In this study, durability characteristics for inorganic and organic/inorganic impregnated concrete specimens are evaluated through longterm chloride exposure test. The specimens with 21MPa and 34MPa strength have been prepared and exposed to chloride attack in the atmospheric, tidal, and submerged conditions. Evaluation for compressive strength, chloride penetration, and electrical potential (half cell potential) for steel corrosion are performed for the specimens exposed for 2 years. From the results, no distinct strength gaining is observed but the resistance to chloride penetration and steel corrosion is evaluated to be improved through surface impregnation. The more improved resistance to chloride attack is measured in the inorganic impregnated concrete and the results from atmospheric condition show more improved resistance to chloride attack than those from submerged and tidal condition.

A Study on Chloride Attack Resistibility of Quaternary Concrete (4성분계 콘크리트의 염해 저항성능에 관한 연구)

  • Lee, Dong-Un;Park, Hyun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1188-1194
    • /
    • 2014
  • The purpose of this study is to estimate Chloride Attack Resistibility and mechanical properties of quaternary concrete adding fly ash, blast-furnace slag, and silica fume. Compressive strength, modulus of elasticity, chloride migration coefficient, charge passed from Rapid chloride penetration test(RCPT), and immersion testing in 3% NaCl are tested. Chloride migration coefficient and charge passed of quaternary concrete measured $0.032{\times}10^{-12}m^2/sec$ and 650 coulomb at 17 weeks, which are in a permitted limit. Also in immersion test, depth of chloride penetration and maximum chloride ion of quaternary concrete measured 3.7 mm and $10.211kg/m^3$ respectively. From the results, quaternary concrete adding fly ash, blast-furnace slag, and silica fume denotes improvement of mechanical properties and chloride attack resistibility.

An Experimental Evaluation of Chloride Content and Chloride Penetration Depth in Concrete by Deicing Agent Type (제설제 종류에 따른 콘크리트 염화물 침투깊이 및 염화물량의 실험적 평가)

  • Lee, Sang-Hyun;Jo, Hong-bum;Kim, Young-Sun;Kim, Kwang-Ki;Ryu, Hwang-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.276-277
    • /
    • 2017
  • Deicing agent affect concrete durability such as scaling, rebar corrosion strength of concrete. In this study, developed deicing agent satisfied with EL610 is evaluated to compare affects to concrete with no deicing agent and chloride-containing deicing agents. Deicing agents are applied to concrete surface during four months twice a week. Chloride content, chloride penetration depth and concrete strength are evaluated. After experiment, chloride content, chloride penetration depth of concrete are as follows. Chloride-containing deicing > Eco friendly deicer > No deicing agents. Concrete strength are also as follows. Chloride-containing deicing > Eco friendly deicer > No deicing agents. From experiment, developed deicing agent shows low chloride content in concrete and affect concrete strength little lower than chloride-containing deicing.

  • PDF

Evaluation of Properties of Polymer-Modified Mortar with CSA (CSA를 혼입한 폴리머 시멘트 모르타르의 성능평가)

  • Joo, Myung-Ki;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • Two main parameters were examined such as CSA content and polymer-binder ratio to find effects on the strength, water absorption, chloride ion penetration depth, carbonation depth, length change and chemical resistance of polymer-modified mortar with CSA and EVA polymer powder (EVAPP). As results, compressive, flexural, tensile, adhesive strengths, and length change of the polymer-modified mortar with CSA and EVAPP increases with increasing CSA content and polymer-binder ratio, although the water absorption, chloride ion penetration depth, and carbonation depth decrease with increasing polymer-binder ratio and CSA content, and also the chemical resistance decreases. Such strength and durability development is attributed to the high tensile strength of EVA polymer and the improved bond between cement hydrates and aggregates because of the addition of EVAPP and CSA.

An Experimental Study on Chloride Ions Penetration of Mortar containing Si/Al Hybrid-Inorganic Salt (Si/Al 복합 무기염을 적용한 모르타르의 염소이온침투깊이에 대한 실험적 연구)

  • Khil, Bae-Su;Kim, Do-Su;Kang, Yong-Sik;Kim, Woo-Jae;Choi, Se-Jin;Kim, Sung-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.417-418
    • /
    • 2009
  • As iron corrosion by means of penetration of chlorides resulted in a serious deterioration of seaside and landfill concrete construction, it is urgently necessary for seaside construction to acquire watertightness and resistance for chloride-attack. Hence in this study, Si/Al liquor type hybrid-inorganic salt which was very effective compound for improving resistance for chloride-attack applied to mortar and then evaluated resistance for chloride-attack with curing(7, 14, 28, 56 days).

  • PDF

A Comparative Study of Sulfate and Chloride Intrusion in Mortar Sections: An Approach Using Laser Induced Breakdown Spectroscopy and Ion Exchange Membrane (LIBS와 이온교환막을 활용한 모르타르 단면 침투 황산염과 염화물 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • This research aimed to conduct an empirical assessment of the penetration of chloride and sulfate ions into mortar sections using an anion exchange membrane(AEM) and laser-induced breakdown spectroscopy(LIBS). The study involved a simultaneous ion chromatography(IC) analysis and LIBS analysis performed on mortars immersed in varying concentrations of chloride and sulfate. The findings revealed that at the wavelengths specific to Chloride(837.59nm) and Sulfur(921.30nm), the LIBS intensity achieved using AEM surpassed that obtained with a paper substrate at equivalent penetration concentrations. A robust correlation was confirmed between LIBS intensity and chloride ion concentration. Furthermore, when juxtaposed with IC analysis concentration outcomes at identical depths, the AEM displayed a higher intensity. The research noted an enhancement in LIBS intensity and a diminution in errors within the low-concentration section when deploying AEM. However, for the Sulfur wavelength of 921.3nm, there remains a need to augment the sensitivity of the LIBS signal within the low-concentration section in future studies. The findings underscore the potential of employing AEM and LIBS for precise analysis of chloride and sulfate ion penetration into mortar sections. This strategy can aid in bolstering assessment precision and mitigating errors, particularly in regions with low concentrations. It is recommended to further research and develop methods to amplify the sensitivity of the LIBS signal for sulfur detection in low-concentration sections. In sum, the study accentuates the significance of employing advanced techniques like AEM and LIBS for efficacious and precise analysis in the domain of mortar section assessment.