• Title/Summary/Keyword: 염해저항성

Search Result 22, Processing Time 0.026 seconds

Chloride Attack Resistibility of Marine Concrete under Pressure (압력을 받는 해양콘크리트의 염해저항성)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.52-53
    • /
    • 2018
  • As a result of exposing the concrete at 1 and 6 atm in order to evaluate the salt resistance of the pressurized marine concrete, the pressure resulted in promoting the chloride ion penetration of the concrete. Particularly, the amount of water soluble chloride in the surface area tends to increase rapidly, and this cause is considered to be highly correlated with the size of the capillary pores of the concrete. On the other hand, the blending of blast furnace slag was effective to increse chloride attack resistibility even under the pressure.

  • PDF

Resistance to Chloride Attack of Normal Strength Concrete Depending on Spreading of Different Types of Oils (유지종류변화 및 표면도포에 따른 보통강도 콘크리트의 염해저항성)

  • Baek, Cheol;Lee, Jae-Jin;Hwang, Chan-Woo;Lee, Jun-Seok;Lee, Dong-Yun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.163-164
    • /
    • 2017
  • The paper is to investigate the effect of spreading of various kinds of oils on resistance to chloride attack of the normal strength concrete. Resistance to chloride attack was measured for 32 weeks and six different kinds of oils ere used. Test results indicated that resistance to chloride attack was improved in order of DSP, BD, ERBD and ERCO compared with that of Plain mixture due to filling effect of capillary pore by the use of oil.

  • PDF

An Evaluation on the Field Application and Resistance for the Shrinkage-Chloride Attack of Concrete containing High Durability Additivee (내구성개선제를 적용한 콘크리트의 수축-염해저항성 및 현장 적용특성 평가)

  • Kim, Do-Su;Khil, Bae-Su;Kim, Woo-Jae;Kim, Sung-Su;Jung, Yong;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.733-736
    • /
    • 2008
  • In this study, we developed durability promoting chemical agent(HD) that simultaneously improved resistance for chloride attack and shrinkage of concrete. This agent as typed aqueous solution containing organic and inorganic compounds applied to concrete mix(Bx0.6%, 1.2%) of seaside construction using SLG and then evaluated the effect on the shrinkage and chloride attack of concrete. By the addition of HD, it was elucidated that resistance for chloride attack and shrinkage were improved above 50% and 33% respectively than non-added concrete(Plain). This performance was confirmed through the Field-test applied HD(Bx0.6%) such as RCD construction.

  • PDF

Evaluation of Chloride Attack Resistibility of Heavyweight Concrete Using Copper Slag and Magnetite as Aggregate (동슬래그 및 자철석을 골재로 사용한 중량 콘크리트의 회파블록 적용을 위한 염해저항성 평가)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.483-492
    • /
    • 2017
  • Recently, the coastal area has become the popular place for infrastructure development. To provide a beautiful scenary of costal area to nearby facilities without any hinderance, and also to protect those facilities from the sea water overflow, it is necessary to develop a new type of wave dissipating block, which is a turning wave block. It is noticeable that the top of the turning wave block is flat and thus can provide spaces for various purposes. However, the unit weight of the block decreases due to the presence of pipeline that is installed for turning the direction of the waves. In order to mitigate such problem, a heavyweight concrete needs to be used to increase the resistance against tidal waves. The copper slag and magnetite were used as a source of fine and coarse aggregate, respectively. The 28 day compressive strength of concrete incorporating ordinary and heavyweight aggregate did not show significant differences. It should be noted that the chloride ion penetration resistance was evaluated using NT-BUILD 492 rather than ASTM C 1202 method because concrete incorporating magnetite as a coarse aggregate showed excessive current flow by ASTM C 1202 method. According to the results from NT Build 492 method, which uses the penetration depth of chlorine ions to obtain chloride ion diffusivity, the heavyweight concrete incorporating the copper slag and the magnetite showed the best resistance against the chloride ion penetration. Therefore, it is reasonable to say that heavyweight concrete made with copper slag and magnetite can be used for production of turning wave block.

Evaluation of Salt Damage Resistance of Concrete according to Fire Control Time (화재진압시간에 따른 콘크리트의 염해저항성 평가)

  • Lee, Jun-Hae;Park, Dong-cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.109-110
    • /
    • 2020
  • In the event of a fire, fire engines usually arrive within 15 minutes and become a fire suppressor. In this paper, an analytical model was established to evaluate the salt damage resistance of concrete according to fire suppression time, and the concentration of salt inside the concrete after fire was measured and the time to reach the critical concentration was assessed by how short.

  • PDF

Evaluation of Engineering Properties in Early-Age Concrete with TDFA (TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가)

  • Park, Jae-Sung;Park, Sang-Min;Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.

The Experimental Study on the Durability of the 70, 100MPa Grade High Strength Concrete with the Land Sand (육상모래를 사용한 70, 100MPa급 고강도 콘크리트의 내구특성에 관한 실험적 연구)

  • Park, Jung-Jun;Ahn, Gi-Hong;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.201-202
    • /
    • 2010
  • In this Study, we manufactured the 70, 100MPa grade high strength concrete with the land sand by batcher plant in the field. In order to verify attainment of design compressive strength and the durability of the manufactured concretes we examined the tests such as compressive strength test, freeze-thaw test, carbonation test, test for concrete's ability to resist chloride ion penetration.

  • PDF

Evaluation on Chloride Attack Resistance of Recycled Fine Aggregate Mortar (순환잔골재 모르타르의 염해저항성 평가)

  • Jang, Hyun-Sik;Kim, Gyu-Yong;Yoon, Min-Ho;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.52-53
    • /
    • 2016
  • Mechanical properties and durability of recycled aggregate concrete was known to decrease due to the adhesive mortar of recycled aggregate. But in this study, As the result of chloride diffusion resistance of recycled fine aggregate mortar, the mechanical properties are reduced according to the increase of the substitute ratio of recycled fine aggregate. But the chloride diffusion coefficient was almost same with natural fine aggregate mortar.

  • PDF

Development of Chloride-ion Penetration Device for Concrete Considering Pressure Condition (압력조건을 고려한 콘크리트의 염화물이온 침투 장치 개발)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.25-26
    • /
    • 2018
  • In this study, the device was developed for evaluating the effect of pressure on chloride ion penetration of concrete. And chloride-ion penetration depth and water soluble chloride contents was evaluated concrete using ordinary portland cement and blast-furnace slag cement using developed device. As a result, chloride ion penetration of concrete was promoted according to the action of pressure and the exposure period. and the incorporation of blast-furnace slag was effective for chloride attack resistibility under pressure.

  • PDF

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.