• Title/Summary/Keyword: 염소 소독부산물

Search Result 65, Processing Time 0.024 seconds

상수를 염소소독시 생성되는 염소 소독부산물(DBPs)의 생성능에 관한 연구

  • Jeong, Yong;Shin, Dong-Cheon;Lim, Young-Uk;Kim, Jun-Seong;Park, Yeon-Sin
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.75-75
    • /
    • 1996
  • 최근 가장 관심이 집중되고 있는 음용수중의 미량오염물질로는 인위적으로 첨가되는 소독제(disi octant)로 인한 소독부산물(disinfection by-products: DBPs)을 들 수 있다. 1970년대부터 염소소독시 수중의 유기오염물길과 반응하여 발암성물질 과 돌연변이 물질이 다수 함유되어 있는 클로로포름(chloform)을 포함한 트리할로메탄(Trih리omethane: THMs)의 생성이 발견되었으며 이로 인한 건강상의 영향이 지속적으로 보고되고 있다. 염소소독시 780가지 이상의 화합물이 염소와 휴믹산(humic acids)과의 반응에 의해 생성되며, 이중 대부분이 할로겐 화합물로 알려져 있다. 염소 소독부산물로는 인체발암력을 지니고 있는 트리할로메탄(THMs) 이외에도 할로아세틱산(Haloaceticacids: HAAs), 할로아세토나이트릴(Haloacetbnitriles: HANs)등이 주 생성물질인 것으로 알려져 있으나 우러나라의 원수특성에 따른 소독부산물의 생성능 (Formation potential)에 대한 연구가 미흡한 실정이다. 본 연구에서는 우리나라 주요 4대강(한강, 대청호, 영산강, 낙동강)의 원수를 실험실내에서 염소처리하여 생성되는 소독부산물의 생성농과 pH, 체류시간 등의 조건에 따라 생성능을 조사하였다. 각 화합물은 추출 및 농축과정을 거친 후 GC/MSD를 사용하여 물질을 확인한 후 할로겐화합물에 민감한 GC/ECD를 사용하여 시료를 분석하였다. pH와 시간, 원수중의 유기물 함량이 소독부산물의 생성에 많은 영향을 미치는 것으로 나타났다. THMs은 알칼리에서, HAAs의 경우는 약산성에서 접촉시간이 증가할수록 높은 생성능을 보였고, HANs의 경우는 급속히 생성했다가 시간이 경과함에 따라 소멸하며 약산성에서 높은 생성능을 보임을 알 수 있었다, 강별로는 낙동강에서 THMs파 HANs의 생성능이 비교적 높았고, 영산강에서는 HAAs의 생성능이 높았다. 각 원수의 특성에 따른 생성능을 파악함으로써 생성능 저감방안을 마련하며, 소독 부산물질의 인체노출평가에 따른 위해성평가를 통해 관리기준을 설정해야 할 것이다.

  • PDF

A Case Study on Chlorine Dioxide Usage at a Conventional Water Treatment Plant (기존 정수장 이산화염소 시범도입 사례연구)

  • Lee, Song-Hee;Lee, Byung-Doo;Kim, Jin-Keun;Seog, Kwon-Soo;Lee, Joung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • As the regulations on DBPs are tightened, many water treatment plants (WTPs) in Korea have already introduced or will introduce enhanced coagulation, alternative disinfectants and advanced treatments such as ozonization and granular activated carbon to improve drinking water qualify. After a phenol leakage accident at the Nakdong-River in 1991, 26 WIPs in Korea introduced carbon dioxide generators, but there has been no accumulation of significant operating data. This research summarizes things that should be considered for the introduction of carbon dioxide disinfection process to WTPs based on one year operation data from A WTP that has had high concentration of DBP during a specific period in the summer. The removal efficiency of DBP was $30{\sim}40%$, but those of 2-MIB, Geosmin were less than 10%. The generation rate of $ClO_2$ by-products such as chlorite and chlorate were $70{\sim}100%$ of input dosage, but the ratios increased over time. At the same time, strong chlorine odors may be produced in the distribution system when $ClO_2$ was used with $Cl_2$ as a result of reaction between the chlorite and residual chlorine.

Effects of pH, Water Temperature and Chlorine Dosage on the Formation of Disinfection Byproducts at Water Treatment Plant (pH, 수온, 염소주입량이 정수장 소독부산물 생성에 미치는 영향)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.505-510
    • /
    • 2015
  • This study investigated formation potential of 16 disinfection byproducts (DBPs) (e.g., g trihalomethanes, haloacetic acids, haloacetonitriles, chloral hydrate, etc.) upon chlorination of raw water at various pH, water temperatures, and chlorine doses. We also compared the DBP formation potential (DBPFP) of raw and filtered waters. Most of DBPs were formed higher at neutral pH, but dichloroacetic acid, chloroform, and bromodichloromethane were formed higher over pH 7. As water temperature increased, concentrations of chloral hydrate, haloacetic acids, and haloacetonitriles linearly increased while that of trihalomethanes exponentially increased. Formation of chloral hydrate, trihalomethanes, and trihaloacetonitriles significantly increased up to 2.0 mg/L $Cl_2$ of chlorine addition, then gradually increased at 2.0~5.6 mg/L $Cl_2$. Filtered water formed less DBPs than raw water in most DBPs except for trihalomethanes.

Changes in Molecular Weight of Dissolved Organic Matter by Photodegradation and their Subsequent Effects on Disinfection By-Product Formation Potential (광분해에 의한 용존 유기물질의 분자량 변화가 소독부산물 생성능에 미치는 영향)

  • Lim, Jung-Hee;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.769-775
    • /
    • 2013
  • UV-induced transformations in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the disinfection by-product formation potential (DBPFP) were investigated using the mixtures of the two humic substances with different sources, and two different size fractions of Suwannee River fulvic acid (SRFA). 7 day-photodegradation resulted in the decrease of specific ultraviolet absorbance (SUVA) of the mixtures as well as the specific DBPFP. After the irradiation, however, higher specific DBPFP values were consistently observed at the same range of the SUVA values. This suggests that non UV-absorbing components, generated by the UV-irradiation, may contribute to the formation of DBPs. Two different molecular size fractions of SRFA showed dissimilar responses to photodegradation. The behavior was also influenced by the types of the DBPs generated. Higher levels of trihalomethenes (THMs) were formed per organic carbon for the high molecular fraction compared to the low molecular fraction, whereas no differences were found in the formation of haloacetic acids (HAAs) between the two different size fractions. The formation of the two types of DBPs also differed by the irradiation times. Specific formation potential of THMs consistently increased upon the irradiation, whereas HAAs showed the initial increase followed by the decrease in their specific formation potential.

Inactivation of Indicating Microorganisms in Ballast Water Using Chlorine Dioxide (이산화염소를 이용한 선박평형수 내 지표 미생물 불활성화)

  • Park, Jong-Hun;Sim, Young-Bo;Kang, Shin-Young;Kim, Sang-Hyoun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.111-117
    • /
    • 2018
  • Disinfection of ballast water using chlorine dioxide was investigated under various initial microorganism contents, dose concentrations and pH values. Kinetics of microorganism inactivation and byproduct generation of chlorine dioxide treatment were compared with the chlorine treatment. Results of treatments with chlorine dioxide concentrations of 0 to $10mg\;Cl_2/L$ showed that The optimum concentration of chlorine dioxide required for disinfection of ballast water was 1 mg/L. The difference among the second order reaction constants for bacterial disinfection at pH 7.2 to 9.2 for chlorine dioxide was less than 5% for both bacteria. This result implied that the bactericidal effects of chlorine dioxide was independent of the pH in the examined range. On the other hand, the inactivation kinetics of chlorine for E. coli and Enterococcus decreased by 17% and 25%, respectively, when pH increased from 7.2 to 9.2. The bactericidal power of chlorine dioxide was superior to sodium hypochlorite above pH 8.2, the average pH value of sea water. Furthermore, treatments of chlorine dioxide generated less harmful byproducts than chlorine and had a long-term disinfection effect on bacteria and phytoplankton from the results of experiment for 30 days. Chlorine dioxide would be a promising alternative disinfectant for ballast water.

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water II (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구 II)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-81
    • /
    • 2004
  • The formation pattern of DBPs (disinfection by-products) in raw water treated with hypochlorite, chlorine disinfectant was studied. TOC (total organic carbon), residual chlorine, turbidity and 14 DBPs in raw water from Han-river and Nakdong river during 1 ~ 14 days were determined. Total DBPs in Han river was 101.3 ng/mL (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 68%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively. In Nakdong river total DBPs was 98.4 ng/mL (678.6 nM) and dominant class was HAAs. (55.8 ng/mL, 57%) THMs(34%) and N-compounds like HANs (haloacetonitriles, 5%) and chloropicrin were increased. It may be explained that high concentration of NH4-N in Nakdong river react with chlorine produced chloramine and this formed different pattern of DBPs. As a result, total DBPs formation pattern depends on raw water and disinfectant and in generally the initial concentration of acidic HAAs was high and THMs was increased gradually.

Variation of Disinfection-by-Prodcut in Distribution System and Evaluation of Correlation between Disinfection-by-Product and Physico-Chemical Parameters (관망에서의 소독부산물 변화와 관련 영향인자들의 상관관계 분석)

  • Song, Young Il;Ann, Suna;Ann, Seoungyun;Seo, Daeguen;Cho, Hyukjin;Lee, Jaesung;Choi, Ilwhan;Shin, Changsoo;Lee, Hee Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • The distributed systems managed by K-water were surveyed to study the characteristic of disinfection-by-product (Trihalomethans & Haloacetic acids) formation and the correlations between the concentrations of disinfection-by-product and physico-chemical parameters. Five distribted system were selected according to their water ages and the degree of deterioration of their pipelines. Total seven items including Trihalomethans (THMs), Haloacetic acids (HAAs), BDOC, DOC, pH, chlorine residual, and temperature were analysed in monthly basis. The concentration of organic matter were increased according to water age and pipeline deterioration in this study. The coefficient of determination between the decline of residual chlorine and the increase of water age was revealed as high. Also, the coefficient of determination between the decline rate of residual chlorine and the increase of the Trihalomethans concentration were studied as high. Furthermore the longer water age is the bigger the effect on Trihalomethans formation and temperature. However, the coefficient of determination between the concentraion of Haloacetic acid and water age, residual chlorine, and temperature were revealed as low in this study.

A Study on Control Disinfection By-products in High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 소독부산물 제어에 관한 연구)

  • Cho, Haejin;Shin, Hyunsoo;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2017
  • Sodium hypochlorite used in water disinfection processes is generally in the production of chlorine to 0.8%. As the dose of chlorine increases, disinfection by-products (Chlorate) also increase simultaneously and exceed water quality standards. In this study, the electrolytic cell of a sodium hypochlorite generator (12% chlorine) was adjusted to control the production of the disinfection by-products. As a result, it was possible to reduce Chlorate concentrations by more than 95% by adjusting the pH of the electrolytic cell from 1.53 to 4.2 (normal pH of the electrolytic cell). As a low current is required to obtain these results, a 15% improvement in the efficiency of the positive electrode is also observed. For the development of High Sodium Hypochlorite Generation can be used in a safe sodium hypochlorite solution, which is expected to contribute to improvement in the safety of the disinfection process.

Effect of Monochloramine and Dimethylamine Concentrations on the NDMA Formation (모노클로라민과 디메틸아민 농도가 NDMA 생성에 미치는 영향)

  • Kim, Jong-O
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.755-759
    • /
    • 2008
  • As a disinfection byproduct, N-nitrosodimethylamine(NDMA) formation was studied according to chlorine, nitrogen, and carbon composition related to monochloramine and dimethylamine(DMA) concentrations. The highest NDMA formation was observed when the dimethylamine/monochloramine ratio was close to 1, and the formation was rapidly decreased when the ratio was less or greater than 1. The formation of NDMA increased with increasing chlorine/nitrogen ratio indicating the chlorine is a limiting factor. A rapid disinfection byproduct was formed at 72 hour contact time in this study. As the previous researches, pH was a significant factor for the NDMA formation.