• Title/Summary/Keyword: 염소 발생

Search Result 323, Processing Time 0.024 seconds

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

The Chloride Diffusion Properties of Concrete with Mineral Admixtures (혼화재를 사용한 콘크리트의 염소이온 확산 특성)

  • Park, Jung-Jun;Koh, Kyoung-Taek;Kim, Do-Gyeum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.239-246
    • /
    • 2004
  • To improve the durability of concrete structure, we usually consider the reduction of water-cement ratio, the increase of concrete cover depth and the use of mineral admixtures. The use of admixtures make concrete more durable and tighten against water in recent papers so it is needed to study more about the relationship between the admixtures and the chloride ion diffusion. Therefore we analyzed the correlation between chloride ion diffusion and physical properties such as compressive strength, void ratio, air permeability of the concrete, and tried to use them as fundamental data for analyzing chloride ion diffusion mechanism of the concrete mixed with mineral admixtures.

The Effect of Pre-chlorination on the Coagulation of Microcystis aeruginosa (전염소처리가 Microcystis aeruginosa 응집에 미치는 영향)

  • Lee, Tae-Gwan;Jin, Jung-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.505-510
    • /
    • 2000
  • In this study the effects of pre-chlorination on the coagulation of water which contain Microcystis aeruginosa. were investigated on the laboratory scale. We prepared the sample of $10^5cell/mL$ Microcystis aeruginosa and then applied 0.2, 1.0, 10 mg-Cl/L chlorine on the sample After reaction period(1 minute and 1 hour), each sample was coagulated. As a result, after 0.4 mg-Al/L coagulant dose, turbidities of all samples were below 2 mg-Kaolin/L. Turbidity was not affected by chlorine dose. As the dose of chlorine was increased, the residual aluminum was decreased, but result of $UV_{254}$ was adverse.

  • PDF

Optimal design considering topological characteristics and residual chlorine concentration of water distribution systems (상수도시스템의 위상학적 특징과 잔류염소 농도를 고려한 최적설계)

  • Ko, Mun Jin;Kim, Min Jun;Kim, Ryul;Choi, Young Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.181-181
    • /
    • 2022
  • 상수도 관망은 비정상상황에서도 안전한 물을 안정적으로 공급하는 것을 목표로 한다. 따라서 상수도 관망의 최적 설계는 수리학적 제약조건 (i.e., 절점의 압력, 관의 유속)을 만족하는 설계안을 제시한다. 하지만 점차 커지는 도시 규모에 따라 수질적으로 안전한 물을 공급하지 못하는 문제가 발생하고 있다. 또한, 상수도시스템의 형식 (i.e., 수지상식, 혼합식, 순환식)에 따라 용수의 체류 시간, 절점의 압력 등이 상이하다. 따라서, 본 연구에서는 도시 규모 및 형식과 잔류염소 농도를 고려한 상수도시스템 최적 설계를 진행하였다. 절점의 개수에 따라 도시의 규모를 분류하였으며, BI(BI; Branch Index) 지수를 통해 상수도시스템의 형식을 분류하였다. 또한, 수리학적 제약조건(i.e., 절점의 압력)과 수질적 제약조건 (i.e., 잔류염소 농도)을 설정하여 수리-수질을 동시에 만족하는 최적 설계안을 도출하였다. 비상시에도 물을 안정하게 공급하기 위하여 시스템의 탄력성과 설계비용을 목적함수로 설정하여 다목적 최적 설계를 진행하였다. 이러한 연구는 압력만을 고려한 기존 설계단계에서 수질적 측면을 동시에 고려하여 수질 측면의 안전성을 향상할 수 있다. 또한, 시스템의 탄력성을 고려하여 비정상상황에서도 물을 공급하여 사용성을 향상하는 설계안을 도출하여 수리학적 안정성을 만족하며, 경제적 측면도 향상할 수 있다.

  • PDF

Development and implementation of smart pipe network operating platform focused on water quality management (스마트 상수관망 수질관리 운영플랫폼 개발과 적용)

  • Dae Hee Park;Ju Hwan Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.453-453
    • /
    • 2023
  • 상수관망의 수질사고와 이상상황 발생시 대응을 위해서는 급수구역에 설치되어 있는 자동수질측정기, 정밀여과장치, 재염소주입설비, 자동드레인 등의 계측·제어설비들 간의 유기적인 정보공유를 통한 제어를 필요로 한다. 스마트 상수관망 운영플랫폼은 이러한 인프라 시설의 운영방안을 고려하여 분산되어 있는 계측데이터를 통합감시 및 제어하는 시스템으로 개발되었다. 상수관망 운영플랫폼은 능동형 분석 제어기술을 도입하여, 스마트 상수관망 인프라 설비를 최적제어할 수 있도록 구현하였다. 통합운영 플랫폼은 PostgreSQL, PostGIS, GeoServer, OpenLayers 등의 기술을 활용하여 개발하였다. 플랫폼은 계측감시, 시설관리, 운영제어 등의 기능으로 구성되며, 상수도 업무지원을 위한 관망해석 및 네트워크 분석 기능을 지원한다. 본 시스템은 스마트 상수도 구축사업을 통해 구축한 유량·수질모니터링 장비와 수질관리를 위해 도입된 재염소, 자동드레인 설비의 운영상태를 실시간 조회하는 모니터링 프로그램과, 관망해석 프로그램 그리고 대상설비의 최적제어를 위한 운영관리 프로그램으로 구성되어 있다. 모니터링 프로그램은 현장에서 측정되고 있는 유량, 수압, 수질, 펌프운전 등의 상태를 실시간으로 감시하고 클라우드 데이터베이스에 저장·관리하는 기능을 수행한다. 관망해석 프로그램은 EPA_Net모형과 연계되어 관망수리·수질해석을 수행하는 부분으로 재염소설비의 염소 추가주입이나 자동드레인을 통한 배제시 나타나게되는 관의 수리·수질변화를 클라우드 컴퓨팅 환경에서 분석하고 결과를 가시화 하는 기능을 갖고 있다. 운영관리 프로그램은 재염소 주입이 필요할 경우 주입량의 산정하는 부분과 관망 파손이나 수질사고 발생시 최적 단수예상지역을 도출하는 기능을 보유하고 있다. 향후 스마트 상수관망의 능동형 수질관리를 추진하는 지자체에 도입하여 인프라운영관리 기술 확보 및 수질관리 능력 개선과 실시간 감시 및 위기 대응능력 향상에 기여할 것으로 기대된다.

  • PDF

Localization Development of On-Site High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치 국산화 개발)

  • Kim, Jung Sik;Shin, Hyun Su;Lee, Eun Kyoung;Jung, Bong Ik
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • The purpose of this study is to replace existing liquid chlorine with localization of on-site high (12%) sodium hypochlorite generation system. On-site high (12%) sodium hypochlorite generation system is higher the current efficiency of 38.7%, 54.6% reduction of salt consumption, and 97.3% lower rate of chlorate than on-site low (0.8%) sodium hypochlorite generation system.

Influence of Reactive Oxygen Species Produced by Chlorine Dioxide on Induction of Insect Cell Apoptosis (이산화염소의 활성산소 유발에 따른 곤충 세포의 아폽토시스)

  • Kim, Minhyun;Kumar, Sunil;Kwon, Hyeok;Kim, Wook;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.267-275
    • /
    • 2016
  • Chlorine dioxide has an insecticidal activity via its production of reactive oxygen species (ROS). Its cytotoxic activity has been regarded as a main cause of the insecticidal activity. This study tested a hypothesis that cytotoxicity of chlorine dioxide is resulted from its induction of apoptosis against target cells using ROS. Injection of chlorine dioxide significantly reduced total hemocyte counts of Plodia interpunctella larvae and subsequently killed the larvae. To analyze the cytotoxicity with respect to apoptosis, terminal deoxyribonucleotidyl transferase nick end translation (TUNEL) assay was performed. An insect cell line (Sf9) cells were exposed to different concentrations of chlorine dioxide. TUNEL assay showed that chlorine dioxide induced significant apoptosis of Sf9 cells in a dose-dependent manner. When different concentrations of chlorine dioxide were injected to larvae of P. interpunctella, it showed a dose-dependent induction of apoptosis against hemocytes. However, addition of vitamin E significantly suppressed the apoptosis induction and insecticidal activity of chlorine dioxide in a dose-dependent manner. These results suggest that cytotoxicity of chlorine dioxide is resulted from its induction of apoptosis against insect cells using ROS.

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.249-260
    • /
    • 2003
  • The disinfection of drinking water to control microbial contaminants results in the formation of secondary chemical contaminants, DBPs (disinfection by-products). It was studied the formation pattern of DBPs in drinking raw water after hypochlorite, chlorine disinfectant, was added in this study. It was determined TOC (total organic carbon), residual chlorine, turbidity and DBPs in raw water from Han-river during 1~14 days. Total DBPs was $101.3ng/m{\ell}$ (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 69%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively, and HANs (haloacetonitriles), HKs (haloketones) and chloropicrin were analyzed in trace level. Chloroform occupied about 89% in total THMs in concentration of $61.5ng/m{\ell}$, 95% of HANs was DCAN (dichloroacetonitrile) in $0.72ng/m{\ell}$, 50% of HAAs was TCAA (trichloroacetic acid). On the study of relationship in formation among the DBPs, HANs forms with THMs competitively to the point of the concentration of $40ng/m{\ell}$ of THMs. For HAAs, it did not show the prominent tendency. But it was observed that the compounds of large oxidation state are formed at first, and becomes to the compounds of low oxidation states.

Introduction to Electrochemical Quartz Crystal Microbalance Technique for Leaching Study of Metals (금속 침출연구를 위한 전기화학적 미소수정진동자저울 기술 소개)

  • Kim, Min-seuk;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Electrochemical Quartz Crystal microbalance is a tool that is capable of measuring nanogram-scale mass change on electrode surface. When applying alternating voltage to the quartz crystal with metal electrode formed on both sides, a resonant frequency by inverse piezoelectric effect depends on its thickness. The resonant frequency changes sensitively by mass change on its electrode surface; frequency increase with metal dissolution and decrease with metal deposition on the electrode surface. The relationship between resonant frequency and mass change is shown by Sauerbrey equation so that the mass change during metal dissolution can be measured in real time. Especially, it is effective in the case of reaction mechanism and rate studies accompanied by precipitation, volatilization, compound formation, etc. resulting in difficulties on ex-situ AA or ICP analysis. However, it should be carefully considered during EQCM experiments that temperature, viscosity, and hydraulic pressure of solution, and stress and surface roughness can affect on the resonant frequency. Application of EQCM was shown as a case study on leaching of platinum using aqueous chlorine for obtaining activation energy. A platinum electrode of quartz crystal oscillator with 1000 Å thickness exposed to solution was used as leaching sample. Electrogenerated chlorine as oxidant was purged and its concentration was controlled in hydrochloric acid solution. From the experimental results, platinum dissolution by chlorine is chemical reaction control with activation energy of 83.5 kJ/mol.