• Title/Summary/Keyword: 염소이온 흡착

Search Result 41, Processing Time 0.019 seconds

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder (음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성)

  • Lee, Yun-Su;Lim, Seung-Min;Park, Jang-Hyun;Jung, Do-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Performance Evaluation of Chloride and Sulfate Removal using Anion Exchange Resin in Saturated Ca(OH)2 Solutions (음이온 교환수지를 이용한 포화 수산화칼슘 수용액 내 염소이온 및 황산이온 제거 특성 평가)

  • Lee, Yun-Su;Chen, Zheng-Xin;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • Recently, self-healing concrete has been researched as maintenance and repair of concrete structures are important challenges we face. This paper focused on possibility of ion exchange resin as a novelty material directly and actively controlling harmful ions of concrete, whereas most self-healing concrete researches have been focused on methods to automatically filling and repairing internal crack of concrete. Because equilibrium properties between ion exchange resin and harmful ion is important before design of cement mixing proportion, it was conducted to remove chloride or sulfate in saturated $Ca(OH)_2$ solutions containing NaCl or $Na_2SO_4$. The removal performance was analyzed using kinetic equation and isothermal equation. Consequently, the removal properties of anion exchange resin were relatively more dependent on pseudo second reaction equation and Langmuir equation than pseudo first reaction equation and Freundlich equation. And it was concluded that each chloride and sulfate can be removed to the maximum 1068 ppm and 1314 ppm.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.

Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization (축전식 탈염에서 정전압과 정전류 운전에 따른 질산 이온의 선택적 제거율 비교)

  • Choi, Jae-Hwan;Kim, Hyun-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.269-275
    • /
    • 2015
  • The adsorption characteristics of ions were evaluated for the nitrate-selective carbon electrode (NSCE) in accordance with power supply methods. The NSCE was fabricated by coating the surface of a carbon electrode with anion-exchange resin powders with high selectivity for the nitrate ion. Capacitive deionization (CDI) experiments were performed on a mixed solution of nitrate and chloride ion in constant voltage (CV) and constant current (CC) modes. The number of total adsorbed ions in CV mode was 15% greater than that in CC mode. The mole fraction of adsorbed nitrate ion showed the maximum 58%, though the mole fraction was 26% in the mixed solution. This indicates that the fabricated NSCE is highly effective for the selective adsorption of nitrate ions. The mole fraction of adsorbed nitrate was nearly constant value of 55-58% during the adsorption period in CC mode. In the case of CV mode, however, the values increased from the initial 30% to 58% at the end of adsorption. We confirmed that the current supplied to cell is important factor to determine the selective removal of nitrate.

Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete (콘크리트의 화학적 특성을 고려한 철근 부식 임계 염소이온 농도)

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.75-84
    • /
    • 2009
  • The present study assesses the chloride threshold level for corrosion of steel in concrete by examining the properties of four different binders used for blended concrete in terms of chloride binding, buffering of cement matrix to a pH fall and the corrosion behaviour. As binders, ordinary Portland cement (OPC), 30% pulverised fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF) were used in a concrete mix. Testing for chloride binding was carried out using the water extraction method, the buffering of cement matrix was assessed by measuring the resistance to an artificial acidification of nitric acid, and the corrosion rate of steel in mortar with chlorides in cast was measured at 28 days using an anodic polarisation technique. Results show that the chloride binding capacity was much affected by $C_{3}A$ content and physical adsorption, and its order was 60% GGBS>30% PFA>OPC>10% SF. The buffering of cement matrix to a pH fall was varied with binder type and given values of the pH. From the result of corrosion test, it was found that the chloride threshold ranged 1.03, 0.65, 0.45 and 0.98% by weight of cement for OPC, 30% PFA, 60% GGBS and 10% SF respectively, assuming that corrosion starts at the corrosion rate of $0.1-0.2{\mu}A/cm^{2}$. The mole ratio of [$Cl^{-}$]:[$H^{+}$], as a new presentation of the chloride threshold, indicated the value of 0.008-0.009, irrespective of binder, which would be indicative of the inhibitive characteristic of binder.

Electrochemical Generation of Chlorine Dioxide Using Polymer Ion Exchange Resin (고분자 이온교환수지를 이용한 의료.식품용 멸균제 이산화염소의 전기화학분해 발생)

  • Rho, Seung Baik;Kim, Sang Seob
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • A characteristic study of chlorine dioxide generation by the electrolysis system was performed after chlorite ($ClO_2^-$) is adsorbed from sodium chlorite by a polymer ion exchange resin. A strongly basic anion exchange resin was used and a Ti plate coated with Ru and Ir was used as an electrode. Various parameters such as reaction stirring velocity, reaction temperature, chlorine dioxide product concentration, ion exchange resin content and product maker type for the adsorption quantity in the chlorite adsorption of ion exchange resin were investigated and found the ion exchange resin with the maximum adsorption quantity. A generation trend of chlorine dioxide was observed by the electrolysis system and optimum conditions on the desired value were found using response surface design of DOE (Design of Experiments). The strongly basic anion exchange resin with the maximum adsorption quantity was SAR-20 (TRILITE Gel type II) and the adsorption quantity was around 110 mg/IER (g). Observed generation optimum conditions of chlorine dioxide were constant-current (electrode area base; $A/dm^2$) and flow rate of $N_2$ gas (4.7 L/min) at the desired value of sterilization (900~1000 ppm, 1 h).

Chloride Ion Penetration Resistance of Mortars including Expanded Vermiculite Immobilizing Bacteria (박테리아 흡착 팽창질석을 혼입한 모르타르의 염소이온 침투 저항성)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.151-152
    • /
    • 2017
  • This tests examined the effectiveness of bacteria slime on the chloride ion penetration resistance of cement mortar. Test results exhibited that the chloride ion penetration depth of mortars including 5% expanded vermiculite immobilizing bacteria was 17% smaller than that of the control mortar without expanded vermiculite.

  • PDF