Electrochemical Generation of Chlorine Dioxide Using Polymer Ion Exchange Resin

고분자 이온교환수지를 이용한 의료.식품용 멸균제 이산화염소의 전기화학분해 발생

  • Rho, Seung Baik (Department of Chemical Engineering, Keimyung University) ;
  • Kim, Sang Seob (Department of Chemical Engineering, Keimyung University)
  • 노승백 (계명대학교 화학공학과) ;
  • 김상섭 (계명대학교 화학공학과)
  • Published : 2012.02.10

Abstract

A characteristic study of chlorine dioxide generation by the electrolysis system was performed after chlorite ($ClO_2^-$) is adsorbed from sodium chlorite by a polymer ion exchange resin. A strongly basic anion exchange resin was used and a Ti plate coated with Ru and Ir was used as an electrode. Various parameters such as reaction stirring velocity, reaction temperature, chlorine dioxide product concentration, ion exchange resin content and product maker type for the adsorption quantity in the chlorite adsorption of ion exchange resin were investigated and found the ion exchange resin with the maximum adsorption quantity. A generation trend of chlorine dioxide was observed by the electrolysis system and optimum conditions on the desired value were found using response surface design of DOE (Design of Experiments). The strongly basic anion exchange resin with the maximum adsorption quantity was SAR-20 (TRILITE Gel type II) and the adsorption quantity was around 110 mg/IER (g). Observed generation optimum conditions of chlorine dioxide were constant-current (electrode area base; $A/dm^2$) and flow rate of $N_2$ gas (4.7 L/min) at the desired value of sterilization (900~1000 ppm, 1 h).

이온교환수지(ion exchange resin; IER)를 이용하여 이산화염소($ClO_2$)의 전구체 용액인 아염소산나트륨($NaClO_2$) 용액으로부터 아염소산이온($ClO_2^-$)을 흡착시킨 후 전기분해장치(electrolysis system)에 의한 이산화염소 가스 발생 특성을 조사하였다. 이온교환수지는 강염기성 음이온교환수지를 사용하였으며, 전극으로는 Ru, Ir이 코팅된 Ti plate를 사용하였다. 반응조의 교반속도, 온도, 아염소산 제조농도, 이온교환수지의 투입량과 형태에 따라 이온교환수지의 아염소산이온($ClO_2^-$) 흡착량에 미치는 영향을 조사하고 최대 흡착량을 나타내는 이온교환수지를 도출하였다. 전기분해장치에 의한 이산화염소의 발생 추이를 관찰하고 발생 목표값에 최적화된 조건을 실험계획법인 반응표면분석(response surface design)으로 선정하였다. 최대 흡착량을 나타내는 강염기성 음이온교환수지는 SAR-20 (TRILITE Gel type II형)이며 그 흡착량은 약 110 mg/IER (g)으로 관찰되었으며, 전기분해장치의 이산화염소 발생 최적조건은 멸균 목표값인 900~1000 ppm, 1 h에서 정전류는 전류인가 전극의 면적을 기준으로 $A/dm^2$, $N_2$ gas 유량은 4.7 L/min이었다.

Keywords

References

  1. B. R. Deshwal and H. K. Lee, J. Ind. Eng. Chem., 11, 125 (2005).
  2. S. H. Lee, H. Y. Shin, K. J. Ku, Y. Y. Jin, S. J. Jeon, H. S. Chae, and K. B. Song, Korean J. Food Sci. Technol., 39, 222 (2007).
  3. H. S. Shin and Y. S. Oh, Analytical Science & Technology, 12, 403 (1999).
  4. C. S. Kong, Ph. D. Dissertation, Chonbuk National University, Jeonju, Korea (2005).
  5. M. Furuhashi, T. Miyamae, and I. Ueda, Medical Appliance, 52, 14 (1982).
  6. H. Bergmann and S. Koparal, Electrochim. Acta., 50, 5218 (2005). https://doi.org/10.1016/j.electacta.2005.01.061
  7. Y. J. Lee, H. T. Kim, and U. G. Lee, Korean J. Chem. Eng., 21, 647 (2004). https://doi.org/10.1007/BF02705500
  8. C. J. Volk, R. Hofman, C. Chauret, G. A. Gagnon, G. Ranger, and R. C. Andrews, J. Environ. Eng. Sci., 1, 323 (2002). https://doi.org/10.1139/s02-026
  9. S. W. Jeong, H. J. Oh, H. S. Park, J. W. Kang, and S. I. Choi, J. of KSSE., 17, 543 (1995).
  10. T. O. Kwon, B. B. Park, H. C. Roh, and I. S. Moon, J. Korean Ind. Eng. Chem., 20, 296 (2009).
  11. T. O. Kwon, B. B. Park, H. C. Roh, and I. S. Moon, Korean Chem. Eng. Res., 48, 275 (2010).
  12. W. K. Son, H. S. Kim, and S. G. Park, J. KIEEME., 12, 40 (1999).
  13. K. R. Kim, S. H. Lee, S. W. Park, H. S. Kang, and H. S. Chung, Applied Chemistry, 2, 313 (1998).
  14. S. B. Lee, Design of Experiments, 1, 195 (2008).