Browse > Article

Electrochemical Generation of Chlorine Dioxide Using Polymer Ion Exchange Resin  

Rho, Seung Baik (Department of Chemical Engineering, Keimyung University)
Kim, Sang Seob (Department of Chemical Engineering, Keimyung University)
Publication Information
Applied Chemistry for Engineering / v.23, no.1, 2012 , pp. 86-92 More about this Journal
Abstract
A characteristic study of chlorine dioxide generation by the electrolysis system was performed after chlorite ($ClO_2^-$) is adsorbed from sodium chlorite by a polymer ion exchange resin. A strongly basic anion exchange resin was used and a Ti plate coated with Ru and Ir was used as an electrode. Various parameters such as reaction stirring velocity, reaction temperature, chlorine dioxide product concentration, ion exchange resin content and product maker type for the adsorption quantity in the chlorite adsorption of ion exchange resin were investigated and found the ion exchange resin with the maximum adsorption quantity. A generation trend of chlorine dioxide was observed by the electrolysis system and optimum conditions on the desired value were found using response surface design of DOE (Design of Experiments). The strongly basic anion exchange resin with the maximum adsorption quantity was SAR-20 (TRILITE Gel type II) and the adsorption quantity was around 110 mg/IER (g). Observed generation optimum conditions of chlorine dioxide were constant-current (electrode area base; $A/dm^2$) and flow rate of $N_2$ gas (4.7 L/min) at the desired value of sterilization (900~1000 ppm, 1 h).
Keywords
chlorine dioxide; electrolysis system; ion exchange resin (IER); sodium chlorite; response surface design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. R. Deshwal and H. K. Lee, J. Ind. Eng. Chem., 11, 125 (2005).
2 S. H. Lee, H. Y. Shin, K. J. Ku, Y. Y. Jin, S. J. Jeon, H. S. Chae, and K. B. Song, Korean J. Food Sci. Technol., 39, 222 (2007).
3 H. S. Shin and Y. S. Oh, Analytical Science & Technology, 12, 403 (1999).
4 C. S. Kong, Ph. D. Dissertation, Chonbuk National University, Jeonju, Korea (2005).
5 M. Furuhashi, T. Miyamae, and I. Ueda, Medical Appliance, 52, 14 (1982).
6 H. Bergmann and S. Koparal, Electrochim. Acta., 50, 5218 (2005).   DOI   ScienceOn
7 Y. J. Lee, H. T. Kim, and U. G. Lee, Korean J. Chem. Eng., 21, 647 (2004).   DOI   ScienceOn
8 C. J. Volk, R. Hofman, C. Chauret, G. A. Gagnon, G. Ranger, and R. C. Andrews, J. Environ. Eng. Sci., 1, 323 (2002).   DOI   ScienceOn
9 S. W. Jeong, H. J. Oh, H. S. Park, J. W. Kang, and S. I. Choi, J. of KSSE., 17, 543 (1995).
10 T. O. Kwon, B. B. Park, H. C. Roh, and I. S. Moon, J. Korean Ind. Eng. Chem., 20, 296 (2009).
11 T. O. Kwon, B. B. Park, H. C. Roh, and I. S. Moon, Korean Chem. Eng. Res., 48, 275 (2010).
12 W. K. Son, H. S. Kim, and S. G. Park, J. KIEEME., 12, 40 (1999).
13 K. R. Kim, S. H. Lee, S. W. Park, H. S. Kang, and H. S. Chung, Applied Chemistry, 2, 313 (1998).
14 S. B. Lee, Design of Experiments, 1, 195 (2008).