• Title/Summary/Keyword: 염소이온 침투

Search Result 200, Processing Time 0.03 seconds

Chloride Ion Penetration Resistance of Mortars including Expanded Vermiculite Immobilizing Bacteria (박테리아 흡착 팽창질석을 혼입한 모르타르의 염소이온 침투 저항성)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.151-152
    • /
    • 2017
  • This tests examined the effectiveness of bacteria slime on the chloride ion penetration resistance of cement mortar. Test results exhibited that the chloride ion penetration depth of mortars including 5% expanded vermiculite immobilizing bacteria was 17% smaller than that of the control mortar without expanded vermiculite.

  • PDF

Compressive Strength and Chloride Permeability of High Strength Concrete according to the Variety of Mineral Admixtures (광물질혼화재 종류별 고강도콘크리트의 압축강도 및 촉진 염소이온침투 특성)

  • Moon Han-Young;Kim Byoung-Kwon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.407-414
    • /
    • 2004
  • The purpose of this study is to evaluate the ability to resist chloride ions penetration of the concrete structure under marine environment in south-east asia especially. In this study, high strength concrete(HSC) with various combination of ordinary portland cement(OPC), blast-furnace slag(SG) and silica fume(SF) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. And to investigate the fundamental properties and the resistance of chloride penetration of various HSC, setting time, slump flow, compressive strength, void and ASTM C 1202 test were conducted. Test results show that the compressive strength of HSC is similar regardless of SG replacement ratio and total charge passed of chloride is the smallest at 40% replacement of SG. The compressive strength of G4FS HSC is, besides, outstandingly high at early age compare with other HSC, but the compressive strength of G4F HSC, which is vary according to curing temperature and condition, most high at the age after 7 days. Total passed charge of HSC get larger in the order G4FS

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

A Method on the Rapid Assessment of Resistance to Chloride Ion Penetration for Mortar and Concrete with Mineral Admixtures (혼화재를 사용한 모르타르 및 콘크리트의 염소이온 침투 저항성 평가)

  • Park Jung-Jun;Kim Sung-Wook;Koh Kyung-Taek;Lee Jong-Suk;Lee Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.485-492
    • /
    • 2004
  • In this study, ASTM C 1202 which is most commonly used for evaluating the penetration resistance into the concrete is reviewed. The test results by ASTM C 1202 showed that the passed charge could be underestimated as the $OH^-$ ion concentration in the concrete is lowered when the concrete is mixed with the admixtures. Therefore, the modified method using the distilled water was proposed in the paper. According to the test results, the modified method is not susceptible to $OH^-$ ion and temperature rise. In addition, the long term emersion test for the concrete mixed with the admixtures in the NaCl solution showed that the chloride diffusion coefficient tested by the modified method have higher correlation compared to the conventional ASTM method.

Chloride Diffusion Coefficient from NT BUILD 443 (NT BUILD 443에 의한 염소이온 확산계수 고찰)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.295-296
    • /
    • 2009
  • It is often the case with the durability design to use diffusion coefficient obtained from experimental test. From the analytic solution considering the starting time of exposure, it is confirmed that the diffusion coefficient from NT BUILD 443 underestimates real reference value.

  • PDF

Analysis of Chloride ion Penetration of Marine Concrete Structure - Part II. Application of Analysis Program- (해양 콘크리트 구조물의 염소이온 침투해석 - 개발된 프로그램의 적용 중심으로-)

  • 한상훈
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.280-286
    • /
    • 2002
  • 염소이온 확산해석을 실제 구조물에 대해서 수행하기 위해서는 여러 변수들에 대한 값들이 필요하다. 이러한 변수들에 대한 값들은 적용 배합에 대한 실험을 통해 직접 측정할 수도 있지만 설계 단계에서 염해에 의한 내구성을 평가를 위해 실험을 수행하기가 실용적인 관점에서 매우 어렵다. (중략)

  • PDF

An Experimental Study on the Compressive Strength and Chloride ion penetration resistance of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도 및 염소이온 침투 저항성에 관한 실험적 연구)

  • Jung, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.23-24
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Also, reinforced concrete structures in high salinity environments have low durability due to corrosion of reinforcing bars due to infiltrated chlorine ions. Anion exchange resins have an ability to immobilize chlorine ions in the resin while releasing their anions. As a material, it has already been shown that it is possible to fix the chloride ion inside the cementitious material through the cement mortar experiment. The purpose of this study is to confirm the compressive strength of cement mortar using powdered anion exchange resin after powdering an anion exchange resin. In order to confirm the chloride ion fixation ability of the powder anion exchange resin, chlorine ion penetration resistance test was carried out.

  • PDF

An Experimental Study on the Resistance of Nylon Fiber Reinforced Concrete to Chloride Ion Penetration (나일론섬유보강 콘크리트의 염소이온 침투 저항성에 대한 실험적 연구)

  • Jeon, Joong-Kyu;Moon, Jae-Heum;You, Jin-O
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.557-560
    • /
    • 2008
  • Fiber reinforcement has been being widely used in concrete to enhance the mechanical properties and to reduce the micro-cracking caused by plastic and drying shrinkage. While researches has been focused on the benefits of fiber reinforcement, the properties of fiber reinforced concrete are strongly dependent on the type, shape and the amount of fibers in concrete. In this study, the resistance of nylon fiber reinforced concrete against the chloride ion penetration was experimentally observed by NT Build 492. The test results showed that the addition of nylon fiber has little effect on the change of the resistivity of concrete to the chloride ion penetration.

  • PDF

Experimental Study Of Shotcrete Containing Mineral Admixture (광물질 혼화재를 혼입한 숏크리트의 실험적 연구)

  • Kim, S.S.;Jung, H.S.;Park, K.P.;Lee, J.B.;Lee, Y.G.;Jun, H.S.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.633-636
    • /
    • 2008
  • In order to efficient use of land and development of human, a lot of research on the utilization of underground space is being progress. For the smooth flow of traffic, in the case of mountainous terrain like our country, construction of the tunnel is rapidly increasing. The NATM method is used mainly in the domestic. And also, a lot of research for the NATM is underway, but aspects of the material are lacking. In this study, therefore, it is to evaluate the properties of durability according to mixing ratio and a kind of mineral admixture for the development of shotcrete performance by using the MATM.

  • PDF

Effect of Types of Accelerators and Replacement Levels of GGBFS on the Performance of Shotcrete Mortars (숏크리트 모르타르의 성능에 대한 급결제 종류 및 고로슬래그 미분말 대체율의 영향)

  • Lee, Seung Tae;Kim, Seong Soo;Kim, Dong Gyu;Park, Kwang Pil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • In this study, some engineering properties of OPC and GGBFS shotcrete mortars with alkali-free or aluminate accelerator were experimentally examined. As a result, GGBFS mortars with alkali-free accelerator were significantly similar to OPC mortars with same accelerator with respect to both setting time and compressive strength. Comparatively, GGBFS mortars with aluminate accelerator showed a good performance with an increased replacement of GGBFS. Furthermore, when replaced with GGBFS over 50%, the mortars exhibited superior performances of electrical resistivity and chloride ions penetration resistance. Accordingly, it is suggested that GGBFS has a beneficial effect as shotcreting materials in the condition of proper replacement levels.