• Title/Summary/Keyword: 염색체 이수성

Search Result 22, Processing Time 0.037 seconds

Analysis of radiation-induced micronuclei and aneuploidy involving chromosome 1 and 4 by FISH technique (FISH 기법을 이용한 방사선에 의한 소핵과 이수성 분석)

  • Chung, Hai-Won;Kim, Tae-Yon;Cho, Yoon-Hee;Kim, Su-Young;Kang, Chang-Mo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.243-249
    • /
    • 2004
  • The cytokinesis-block micronucleus (CBMN) assay in combination with FISH technique using chromosome-specific centromeric probes for chromosome 1 and 4 was performed in mitogen stimulated human lymphocytes which were exposed to x-radiation to identify different sensitivity of chromosomes to the induction of micronuclei(MN) and aneuploidy by radiation. The frequencies of micronucleated cytokinesis-blocked(MNCB) cells and MN in binucleated lymphocytes(BN) increased with the increase in radiation dose. A significant induction of aneuploidy of chromosome 1 and 4 were found. The frequency of aneuploidy of chromosome 1 and 4 in the control were 9 per 2,000 BN cells and this increased to 47 and 71 following irradiation at a dose of 1 and 2 Gy, respectively. The induction of aneuploidy of chromosome 1 was higher than that of chromosome 4. The frequency of aneuploid BN cells with MN exhibiting positive centromere signal for either chromosome 1 and/or 4 increased in a dose dependent manner, and that for chromosome 1 is higher than that for chromosome 4. Among the total induced MN in irradiated lymphocytes, smaller proportion of MN exhibit centromeric signal of chromosome indicating that radiation-induced MN are mainly originated from chromosomal breakage rather than chromosomal non-disjunction. These results suggest that x-radiation can induce aneuploidy and supports the finding that chromosome vary in their sensitivity to aneuploidy induction by x-irradiation.

Preimplantation Genetic Diagnosis for Aneuploidy Screening in Patients with Poor Reproductive Outcome (염색체 이수성과 관련된 비정상적 임신이 예상되는 환자에서 착상전 유전진단의 결과)

  • Kim, Jin Yeong;Lim, Chun Kyu;Cha, Sun Hwa;Park, Soo Hyun;Yang, Kwang Moon;Song, In Ok;Jun, Jin Hyun;Park, So Yeon;Koong, Mi Kyoung;Kang, Inn Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.179-187
    • /
    • 2006
  • Objectives: The risk of aneuploidies of embryos increases in advanced maternal age or parental karyotype abnormality and it results in poor reproductive outcomes such as recurrent spontaneous abortion (RSA) or repeated implantation failure (RIF). Preimplantation genetic diagnosis for aneuploidy screening (PGD-AS) can be applied for better ART outcome by selecting chromosomally normal embryos. The aim of this study is to evaluate the clinical outcome of PGD-AS and which group can get much benefit from PGD-AS among the patients expected to have poor reproductive outcome. Methods: In 42 patients, 77 PGD cycles were performed for aneuploidy screening. Patients were allocated to 3 groups according to the indication of PGD-AS: group I-patients with old age (${\geq}37$) and RIF more than 3 times (n=11, mean age=42.2 yrs.), group II-patients with RSA (${\geq}3$ times) associated with aneuploid pregnancy (n=19, mean age=38.9 yrs.), group III-parental sex chromosome abnormality or mosaicism (n=18, mean age=29.6 yrs.) including Turner syndrome, Klinefelter syndrome and 47, XYY. PGD was performed by using FISH for chromosome 13, 16, 18, 21, X and Y in group I and II, and chromosome X, Y and 18 (or 17) in group III. Results: Blastomere biopsy was successful in 530 embryos and FISH efficiency was 92.3%. The proportions of transferable embryos in each group were $32.5{\pm}17.5%$, $23.0{\pm}21.7%$ and $52.6{\pm}29.2%$ (mean ${\pm}$ SD), respectively, showing higher normal rate in group III (group II vs. III, p<0.05). The numbers of transferred embryos in each group were $3.9{\pm}1.5$, $1.9{\pm}1.1$ and $3.1{\pm}1.4$ (mean ${\pm}$ SD), respectively. The clinical pregnancy rates per transfer was 0%, 30.0% and 20.0%, and it was significantly higher in group II (group I vs. group II, p<0.05). The overall pregnancy rate per transfer was 19.6% (10/51) and the spontaneous abortion rate was 20% (2/10) of which karyotypes were euploid. Nine healthy babies (one twin pregnancy) were born with normal karyotype confirmed on amniocentesis. Conclusion: Our data suggests that PGD-AS provides advantages in patients with RSA associated with aneuploidy or sex chromosome abnormality, decreasing abortion rate and increasing ongoing pregnancy rate. It is not likely to be beneficial in RIF group due to other detrimental factors involved in implantation.

The Effect of Extremely Low Frequency Electromagnetic Fields on the Chromosomal Instability in Bleomycin Treated Fibroblast Cells (Bleomycin이 처리된 사람 섬유아세포에서 극저주파 전자기장의 효과)

  • Cho, Yoon-Hee;Kim, Yang-Jee;Lee, Joong-Won;Kim, Gye-Eun;Chung, Hai-Won
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.161-166
    • /
    • 2008
  • In order to determine the effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei (MN), aneuploidy and chromosomal rearrangement induced by bleomycin (BLM) in human fibroblast cells, a 60 Hz ELF-EMF of 0.8 mT field strength was applied either alone or with ELM throughout the culture period and a micronucleus-centromere assay was performed. Our results indicate that the frequencies of MN, aneuploidy and chromosomal rearrangement induced by ELM increased in a dose-dependent manner. The exposure of cells to 0.8 mT ELF-EMF followed by ELM exposure for 3 hours led to significant increases in the frequencies of MN and aneuploidy compared to BLM treatment for 3 hours alone (p<0.05), but no significant difference was observed between field exposed and sham exposed control cells. The obtained results suggest that low density ELF-EMF could act as an enhancer of the initiation process of BLM rather than as an initiator of mutagenic effects in human fibroblast.

Validation of QF-PCR for Rapid Prenatal Diagnosis of Common Chromosomal Aneuploidies in Korea

  • Han, Sung-Hee;Ryu, Jae-Song;An, Jeong-Wook;Park, Ok-Kyoung;Yoon, Hye-Ryoung;Yang, Young-Ho;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Purpose: Quantitative fluorescent polymerase chain reaction (QF-PCR) allows for the rapid prenatal diagnosis of common aneuploidies. The main advantages of this assay are its low cost, speed, and automation, allowing for large-scale application. However, despite these advantages, it is not a routine method for prenatal aneuploidy screening in Korea. Our objective in the present study was to validate the performance of QF-PCR using short tandem repeat (STR) markers in a Korean population as a means for rapid prenatal diagnosis. Material and Methods: A QF-PCR assay using an Elucigene kit (Gen-Probe, Abingdon, UK), containing 20 STR markers located on chromosomes 13, 18, 21, X and Y, was performed on 847 amniotic fluid (AF) samples for prenatal aneuploidy screening referred for prenatal aneuploidy screening from 2007 to 2009. The results were then compared to those obtained using conventional cytogenetic analysis. To evaluate the informativity of STR markers, the heterozygosity index of each marker was determined in all the samples. Results: Three autosomes (13, 18, and 21) and X and Y chromosome aneuploidies were detected in 19 cases (2.2%, 19/847) after QF-PCR analysis of the 847 AF samples. Their results are identical to those of conventional cytogenetic analysis, with 100% positive predictive value. However, after cytogenetic analysis, 7 cases (0.8%, 7/847) were found to have 5 balanced and 2 unbalanced chromosomal abnormalities that were not detected by QF-PCR. The STR markers had a slightly low heterozygosity index (average: 0.76) compared to those reported in Caucasians (average: 0.80). Submicroscopic duplication of D13S634 marker, which might be a unique finding in Koreans, was detected in 1.4% (12/847) of the samples in the present study. Conclusion: A QF-PCR assay for prenatal aneuploidy screening was validated in our institution and proved to be efficient and reliable. However, we suggest that each laboratory must perform an independent validation test for each STR marker in order to develop interpretation guidelines of the results and must integrate QF-PCR into the routine cytogenetic laboratory workflow.

Rapid prenatal diagnosis of chromosome aneuploidies in 943 uncultured amniotic fluid samples by fluorescence in situ hybridization (FISH)

  • Han, Sung-Hee;Kang, Jeom-Soon;An, Jeong-Wook;Lee, An-Na;Yang, Young-Ho;Lee, Kyu-Pum;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2008
  • Purpose : Fluorescence in situ hybridization (FISH) on uncultured amniotic fluid cells offers the opportunity for rapid screening of aneuploidies and has become an integral part of the current practice in many clinical cytogenetics laboratories. Here, we retrospectively analyzed the results of interphase FISH in 943 amniotic fluid samples and assessed the efficiency of FISH for rapid detection of aneuploidies. Methods : Interphase FISH for chromosome 13, 18, and 21 was performed in 943 consecutive amniotic fluid samples for rapid diagnosis of aneuploidies referred from 2004 to 2006. Karyotypes from standard cytogenetic analysis were compared to the FISH results. Results : A total of 45 chromosomal rearrangements (4.8%) were found after conventional cytogenetic analysis of the 943 amniotic fluid. After exclusion of known familiar chromosomal rearrangements and inversions (2.1%, 20/943), 2.7% (25/943) were found to have chromosomal abnormalities. Of this group, 0.7% (6/943) were chromosomal abnormalities not detectable by FISH and 2.0% (19/943) were numerical abnormalities detectable by FISH. All 14 cases of Down syndrome (Classic type, 13 cases; Robertsonian type, 1 case) and 5 cases of trisomy 18 were diagnosed and detected by FISH and there were no false-positive or -negative results (specificity and sensitivity=100%). Conclusion : The present study demonstrates that FISH can provide a rapid and sensitive clinical method for prenatal identification of chromosome aneuploidies. However, careful genetic counseling is essential to explain the limitations of FISH, including the inability to detect all chromosomal abnormalities and the possibilities of uninformative or false-negative results in some cases.

  • PDF

Effect of Cytosine Arabinoside, 3-Aminobenzamide and Hydroxyurea on the frequencies of radiation-induced micronuclei and aneuploidy in human lymphocytes (DNA 회복 저해제 Cytosine Arabinoside, 3-Aminobenzamide 및 Hydroxyurea가 방사선에 의해 유도된 소핵과 이수성에 미치는 영향)

  • Cho, Yoon-Hee;Kim, Yang-Jee;Kang, Chang-Mo;Ha, Sung-Whan;Chung, Hai-Won
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.209-219
    • /
    • 2005
  • This study was carried out to examine the effect of the DNA repair inhibitors, Cytosine Arabinoside(Ara C), 3-Aminobenzamide(3AB) and Hydroxyurea(HU) on the frequencies of radiation-induced micronuclei(MNi) and aneuploidy. Irradiated lymphocytes(1-3Gy) were treated with DNA repair inhibitors, Ara C, 3AB and HU for 3 hours and CBMN assay - FISH technique with DNA probe for chromosome 1 and 4 was performed. The frequencies of x-ray induced MNi and aneuploidy of chromosome 1 and 4 were increased in a dose-dependent manner. Ara C, 3AB and HU enhanced the frequencies of radiation-induced MNi and the frequencies of radiation-induced aneuploidy of chromosome 1 and 4 were enhanced by HU and Ara C while no effect was observed by 3AB. The frequency of radiation-induced aneuploidy of chromosome 1 was higher than that of chromosome 4. These results suggest that there are different mechanisms involved in the formation of MNi and aneuploidy by radiation.

Chromosomal Variation in Female and Male Somaclones of Rumex acetosa L. (수영 (Rumex acetosa L.) 암.수 체세포클론에서 염색체 변이)

  • 김수영;이미경;김동순;방재욱
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.113-116
    • /
    • 2001
  • Chromosomal variation was investigated in the female and male somaclones regenerated from the leaf segment culture of Rumex acetosa L. Difference in phenotype depending on the sexuality was not observed. In female somaclones, 21 among 25 somaclones carried the same chromosome complements (2n=14) with wildtype and others were tetraploids (2n=28), Considerable chromosomal variation was found in male somaclones. Only 4 among 20 somaclones carried normal chromosome number (2n=15) and 13 somaclones were aneuploids.

  • PDF

Effect of Maternal Age on Chromosome Aberrations and Telomere Quantity in Chick Embryos (닭의 모체 연령에 따른 생산 배아의 염색체 이상 빈도 및 텔로미어 함량 분석)

  • Lee, Soo-Hee;Subramani, Vinod K.;Sohn, Sea-Hwan
    • Korean Journal of Poultry Science
    • /
    • v.36 no.4
    • /
    • pp.293-300
    • /
    • 2009
  • The rate of fetus with abnormal chromosomes increase with maternal age. Nondisjunction of aging oocyte chromosome is a major reason for the increased rate of abnormalities. Telomeres are the ends of eukaryotic chromosome, which are essential for chromosome stability and are related in cell senescence. This study was carried out to analyze the chromosome aberration rate and amount of telomeric DNA in chick embryo along with maternal age. Fertilized eggs and blood were sampled from White Leghorn layers starting at 20 weeks through to 70 weeks age at 10 weeks interval. Chromosome aberration rate was analyzed by karyotyping. The amounts of telomeric DNA in embryonic cells and lymphocytes were quantified by Quantitative Fluorescence in situ Hybridization method. The chromosome aberration rate in chick embryos significantly differed with maternal age. The chromosome aberration rate increased at early laying period and beyond 70 weeks of maternal age. Therefore, chromosome aberration rate was affected by maternal age due to ovulated oocytes state. However, the amount of telomeric DNA on embryonic cells did not differ significantly with maternal age. Thus, maternal age does not affects telomere quantity in their embryos due to cellular reprograming at early embryonic stage after fertilization.

Chromosome Redundancy and Tree Phenotype Variation in Autotetraploid Trifoliate Orange (동질 사배체 탱자에서 염색체 배가와 수체 표현형의 변이)

  • Oh, Eun Ui;Chae, Chi-Won;Kim, Sat-Byul;Lu, Jian Liang;Yun, Su-Hyun;Koh, Sang-Wook;Song, Kwan Jeong
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.366-374
    • /
    • 2014
  • The study was conducted to investigate the possibility that epigenetic DNA methylation causes tree phenotypic variation in autotetraploids through evaluating the phenotypic variation and DNA methylation in autotetraploids occurred spontaneously from diploid trifoliate orange. Chromosome analysis confirmed that fourteen trifoliate orange trees of selected by flow cytometry were tetraploids (2n = 4X = 36) without any aneuploids. Chromomycin A3 staining determined that these trees were all autotetraploid with doubled chromosome set. Tree phenotypes, such as tree height and width, branching number, length, and angle, internode length, and leaf characteristics, varied in the autotetraploids. Chlorophyll indices were diverse in the autotetraploids, but photosynthetic rates were not significantly different. In addition, a wide range of variation was observed in stomatal density and guard cell length. Analysis of global cytosine DNA methylation showed that there was a variation of the methylation level in autotetraploids. More than half of 14 autotetraploids had at least 2 times higher methylation level than diploid trifoliate orange. The results indicate that tree phenotypic variation in autotetraploids might be related to global DNA methylation for reducing gene redundancy.

Detection of Benzene Metabolite Induced Aneuploidy and Translocation in HL-60 Cells by Fluorescence in situ Hybridization using Whole Chromosome-specific Probes for Chromosome 8 and 21 (벤젠 대사산물에 의해 유도된 HL-60 세포의 8번 및 21번 염색체의 이수성 및 상호전좌)

  • 김수영;정해원
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • Benzene is a widespread human carcinogen, inducing leukemia and hematotoxicity. Exposure to benzene metabolites has been shown to cause genetic damage, including aneusomy and chromosome aberrations. Fluorescence in situ hybridization(FISH) procedure was used to determine if the benzene metabolite, 1, 2, 4-benzenetriol(BT), hydroquinone(HQ) and trans, trans-muconic acid(t,t-MA) induced specific chromosomal change in HL-60 cells. Treatment with BT, HQ and t,t-MA resulted in the induction of monosomy 8 and 21 in HL-60 cells in a dose-dependent manner. All of these metabolites also induced trisomy 8 and 21, but no correlation between frequencies of trisomy and concentration was found. Translocations between chromosome 8 and another unidentified chromosome [t(8:\ulcorner)], and between chromosome 21 and another unidentified chromosome [t(8:21)] were found. However, translocation between chromosome 8 and 21 [t(8:21)] was not found. Results indicate that the benzene metabolites, BT, HQ and t,t-MA, induce chromosome specific numerical and structural aberrations, and the fluorescence in situ hybridization (FISH) approach may be a useful and powerful technique for detection of aneuploidy.

  • PDF