• Title/Summary/Keyword: 열 팽창계수

Search Result 233, Processing Time 0.028 seconds

Effects of Microstructures and Interfaces between $BaTiO_3$ Thin Films and Substrates on Electrical Properties in Aerosol Deposition Method (Aerosol Deposition Method으로 성막한 $BaTiO_3$ 박막과 기판과의 계면 및 미세구조가 전기적 특성에 미치는 영향)

  • Oh, Jong-Min;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.350-350
    • /
    • 2008
  • 최근 이동 통신 분야에서 전자기기들의 고주파화와 소형화에 대한 관심이 높아지면서 고주파 소자로서 필수적으로 사용 되어온 디커플링 캐패시터도 이 두 가지 요구를 만족시키기 위해 기존의 표면 실장형에서 평판 형태인 기판 내장형 캐패시터로 발전해 가고 있다. 이를 실현하기 위한 공정법으로 Low Temperature Co-fired Ceramics (LTCCs)와 polymer composite등의 연구가 진행되고 있으나 LTCCs는 높은 공정온도에 의한 내부 확산과 서로 다른 열팽창 계수에 의한 소결후의 수축과 같은 단점들을 가지고 있으며 polymer composite 은 비교적 낮은 공정온도에도 불구하고 유전특성과 방열특성이 우수하지 못한 문제점을 가지고 있었다. 이러한 단점들을 극복하기 위해 Aerosol Deposition Method (ADM)를 주목하게 되었다. 이 공정 법은 상온 저 진공 분위기에서 세라믹 분말을 기판에 고속 분사시켜 기공과 균열이 거의 없는 치밀한 나노구조의 세라믹을 제작하는 새로운 코팅기술이다. 본 연구에서는 고주파용 디커플링 캐패시터의 응용을 위하여 상온에서 높은 유전율을 가지며 강유전체 물질인 $BaTiO_3$를 사용하였다. 출발원료로서 0.45 ${\mu}m$크기의 $BaTiO_3$ 분말을 이용하여 상온에서 submicron에서 수 micron의 두께로 성막하였다. 그러나 ADM으로 $BaTiO_3$ 막을 성막할 경우 유전율이 100이하로 급격히 떨어지는 현상이 기존 연구에서 보고되어 왔으며 본 연구에서도 이를 확인하였다. 디커플링 캐패시터의 밀도를 높이기 위해서 유전체의 유전율을 높이거나 두께를 앓게 하는 방법이 있으나 이번 연구에서는 박막화에 초점을 맞추어 진행하였다. 하지만 $BaTiO_3$ 막의 두께를 $1{\mu}m$이하의 박막으로 제조했을 경우 XRD 분석을 통하여 결정상이 얻어졌음을 확인했음에도 불구하고 유전체로서의 특성을 보이지 않았다. 이 원인을 $BaTiO_3$ 박막의 누설전류에 의한 것이라고 판단하고 $BaTiO_3$ 박막과 기판과의 계면 및 미세구조를 확인하였으며 이것이 전기적 특성에 미치는 영향에 대해 분석하였다.

  • PDF

Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction (멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가)

  • Jeong, Yeon-Jae;Kim, Jeong-Dae;Hwang, Byeong-Kwan;Kim, Hee-Tae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

Sensitivity Improvement of Shadow Moiré Technique Using LED Light and Deformation Measurement of Electronic Substrate (LED 광을 이용한 그림자 무아레 방법의 감도 향상 및 모바일 전자 기판의 변형 측정)

  • Yang, Heeju;Joo, Jinwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.141-148
    • /
    • 2019
  • Electronic substrates used in a mobile device is composed of various materials, and when the temperature is changed during manufacturing or operating, thermal deformation and stress concentration occur due to the difference in thermal expansion coefficient of each material. The shadow moiré technique is a non-contact optical method that measures shape or out-of-plane displacement over the entire area, but it is necessary to overcome the Talbot effect for high sensitivity applications. In this paper, LED light sources of various wavelengths was used to overcome the Talbot effect caused in the shadow moiré technique. By using the phase shift method, an experimental method to retain the measurement sensitivity within 10 ㎛/fringe was proposed and evaluated, and this method is applied to the thermal deformation measurement of the mobile electronic substrate. In the case of using white light, there were several areas that could not be measured due to the Talbot effect, but in the case of using blue LED light, it was shown that a precise moiré pattern with a sensitivity of 6.25 ㎛/fringe could be obtained in most areas.

The structure and the surface composition of semiconductor CdZnTe films by EBE (EBE로 증착된 반도체 CdZnTe 박막의 결정구조와 표면조성)

  • 박국상;김선옥;이기암
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • We have investigated the structure and the conductivity of the $Cd_{1-y}Zn_{y}$ Te films evaporated on the glass substrates (Corning 7059) by Electron Beam Evaporator (EBE) in pressure of approximately $1 {\times} 10^{-6}$ torr.The structure temperatures were held at both room temperature and $300^{\circ}C$, and the samples have annealed for an hour at $300^{\circ}C$ The survace com-position of the as-prepared films were slightly different from those of CdZn Te source material.Cd losses on the CdZnTe surface was measured about 4% of atomic ratio at room temperature substrate, whereas Zn atomic ratio was nearly constant, relatively. The strure is observed to be polycrystalline whose phase is mainly cubic phase. Thermal expansion coefficient was $6.30 {\times} 10^{-5}/^{\circ}C$ which was calculated from the variation of lattice parameter by X-ray powder pat-terns measured at $400^{\circ}C$.Diffraction peaks were slightly increased by annealing for an hour at $300^{\circ}C $, but they werey highly affected by substrate temperature during evaporation.

  • PDF

Analysis of Stresses Along the Underfill/chip Interface (언더필/칩 계면의 응력 해석)

  • Park, Ji-Eun;Iwona Jasiuk;Lee, Ho-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.35-45
    • /
    • 2002
  • The stresses of the underfill/chip interface due to thermal loading was studied using the finite element method. At first, the effective properties of underfill for several volume fractions of silica particles were calculated by Mori-Tanaka method for three different material sets, and the parameters of singularity for the bimaterial edge and the bimaterial wedge were calculated. Consequently, the stresses at the underfill/chip interface with volume fraction of silica particles were investigated. Five different geometric models of flip-chip assembly involving two kinds of bimaterial strips and three kinds of three-layer models were considered under the assumption that the underfill is homogeneous. It was assumed that all components of the flip-chip assembly were linear elastic and isotropic, and their properties were temperature independent. The analysis was conducted in the context of the uncoupled plane thermo-elasticity under a plane strain assumption.

  • PDF

Characterization of Acryl Polymer Concretes for Ultra Thin Overlays (초박층 덧씌우기용 아크릴 폴리머 콘크리트의 특성 연구)

  • Kim, Dae-Young;Kim, Tae-Woo;Lee, Hyun-Jong;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • This study is performed to evaluate the physical and mechanical characteristics of an acryl polymer concrete that is developed as an overlay material for cement concrete slabs and pavements. Various laboratory tests including viscosity, flow, compressive strength, flexural strength, tensile strength, linear shrinkage, thermal expansion and thermal compatibility tests are performed. It is observed from the laboratory tests that the acryl polymer concrete developed in this study satisfies all the requirements suggested by ACI guideline. In addition to the laboratory tests, an accelerated performance testing (APT) is conducted to validate the performance of the acryl polymer concrete. During the APT, no significant distresses are observed until 15,903,939 cycles of equivalent single axle loading is applied. Finally, a 10mm thick overlay with the acryl polymer concrete is applied on top of an old deteriorated concrete pavement to evaluate field performance. Right after the field construction, skid resistance, noise and roughness are measured. The skid resistance and noise level have been significantly improved while the roughness is increased. Periodic investigation for the field study section will be conducted to evaluate the long-term performance.

Synthesis and Characterization of Wholly Aromatic Polyester Liquid Crystalline Thermosets (전방향족 폴리에스터 열경화성 액정의 합성과 특성)

  • Moon, Hyun-Gon;Jung, Myung-Sup;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • We prepared a series of aromatic liquid crystals (LCs) based on wholly aromatic ester units with the reactive end group methyl maleimide by means of melt condensation method, and the resulting LCs were thermally crosslinked to produce liquid crystalline thermoset (LCT) films. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), and polarizing optical microscopy (POM) with a hot stage. The glass transition temperature ($T_g$) and coefficient of thermal expansion are strongly affected by the mesogen units in their main chain structures. The $p$-substituted biphenyl LC was found to have the highest thermal property value.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.

The Study of Curing Day Reduction by Step Curing of HTPB/AP Propellant (HTPB/AP계열의 고체 추진제의 Step 경화 방법을 통한 경화일(기간) 단축)

  • Kim, Kahee;Park, Jung-Ho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • In this paper, step-curing, which includes the change of curing temperature on the curing process, was applied to reduce curing day of HTPB/AP based propellant. This study targets the improvement of productivity of HTPB/AP based solid rocket motor. Comparison of mechanical properties of propellant resulted in the change of normal curing condition (60℃, 5 days) to step-curing condition (60℃, 1 day / 65℃, 3 days). Post-cure test was conducted to determine the impact on the shelf life of the solid rocket motor. The aging characteristics of propellants were analyzed by measuring mechanical properties and thermal expansion factor. To step-cured propellant, accelerated aging test was performed for 12 weeks, followed by tensile test. Sm(bar) and Em(%) were higher than 8 bar and 40% each, showing excellent mechanical properties.

A Numerical Study on the Effect of Initial Shape on Inelastic Deformation of Solder Balls under Various Mechanical Loading Conditions (다양한 기계적 하중조건에서 초기 형상이 솔더볼의 비탄성 변형에 미치는 영향에 관한 수치적 연구)

  • Da-Hun Lee;Jae-Hyuk Lim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.50-60
    • /
    • 2023
  • Ball Grid Array (BGA) is a widely used package type due to its high pin density and good heat dissipation. In BGA, solder balls play an important role in electrically connecting the package to the PCB. Therefore, understanding the inelastic deformation of solder balls under various mechanical loads is essential for the robust design of semiconductor packages. In this study, the geometrical effect on the inelastic deformation and fracture of solder balls were analyzed by finite element analysis. The results showed that fracture occurred in both tilted and hourglass shapes under shear loading, and no fracture occurred in all cases under compressive loading. However, when bending was applied, only the tilted shape failed. When shear and bending loads were combined with compression, the stress triaxiality was maintained at a value less than zero and failure was suppressed. Furthermore, a comparison using the Lagrangian-Green strain tensor of the critical element showed that even under the same loading conditions, there was a significant difference in deformation depending on the shape of the solder ball.