Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.1.009

Synthesis and Characterization of Wholly Aromatic Polyester Liquid Crystalline Thermosets  

Moon, Hyun-Gon (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Jung, Myung-Sup (Advanced Materials Lab, Samsung Advanced Institute of Technology)
Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.36, no.1, 2012 , pp. 9-15 More about this Journal
Abstract
We prepared a series of aromatic liquid crystals (LCs) based on wholly aromatic ester units with the reactive end group methyl maleimide by means of melt condensation method, and the resulting LCs were thermally crosslinked to produce liquid crystalline thermoset (LCT) films. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), and polarizing optical microscopy (POM) with a hot stage. The glass transition temperature ($T_g$) and coefficient of thermal expansion are strongly affected by the mesogen units in their main chain structures. The $p$-substituted biphenyl LC was found to have the highest thermal property value.
Keywords
liquid crystal; liquid crystalline thermoset; thermal property; coefficient of thermal expansion;
Citations & Related Records
연도 인용수 순위
1 H.-G. Moon, Y.-H. Ahn, and J.-H. Chang, Polymer(Korea), 34, 369 (2010).
2 J.-I. Jin, J.-H. Chang, and H.-K. Shim, Macromolecules, 22, 93 (1989).   DOI   ScienceOn
3 J.-H. Chang, C. H. Ju, and S. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 44, 387 (2005).
4 A. Shiota and C. K. Ober, Prog. Polym. Sci., 22, 975 (1997).   DOI   ScienceOn
5 W. Mormann and J. Zimmermann, Liq. Cryst., 19, 227 (1995).   DOI   ScienceOn
6 D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Brooks/Cole, Thomson Learning Inc, Washington, USA, Chapter 7 (2001).
7 J. L. Koenig, Spectroscopy of Polymers, Elsevier Science Inc, New York, USA, Chapter 4 (1999).
8 L. Jin, T. Agag, and H. Ishida, Eur. Polym. J., 46, 354 (2010).   DOI   ScienceOn
9 A. J. Gavrin, C. L. Curts, and E. P. Douglas, J. Polym. Sci. Part A: Polym. Chem., 37, 4184 (1999).   DOI
10 M.-C. Choi, Y. Kim, and C.-S. Ha, Prog. Polym. Sci., 33, 581 (2008).   DOI   ScienceOn
11 I. W. Choi and J.-H. Chang, Polymer(Korea), 34, 391 (2010).
12 A. Knijnenberg, E. S. Weiser, T. L. StClair, E. Mendes, and T. J. Dingemans, Macromolecules, 39, 6936 (2006).   DOI   ScienceOn
13 D. Lincoln and E. Douglas, Polym. Eng. Sci., 39, 1903 (1999).   DOI
14 A. P. Melissaris and M. H. Litt, Macromolecules, 27, 2675 (1994).   DOI   ScienceOn
15 M. H. Litt, W. T. Whang, K. T. Yen, and X. J. Quin, J. Polym. Sci. Part A: Polym. Chem., 31, 183 (1993).   DOI
16 R. A. M. Hikmet and D. J. Broer, Polymer, 32, 1627 (1991).   DOI   ScienceOn
17 D. Klosterman, R. Chartoff, T. Tong, and M. Calaska, Thermochim. Acta, 396, 199 (2003).   DOI   ScienceOn
18 M. Iqbal, A. Kijnenberg, H. Pouli, and T. J. Dingemans, Inter. J. Adhes. Adhes., 30, 682 (2010).   DOI   ScienceOn
19 C. Carfagna, E. Amendola, and M. Giamberini, Compo. Struc., 27, 37 (1994).   DOI   ScienceOn
20 S. H. Cho, J. Y. Lee, and E. P. Douglas, High Perform. Polym., 18, 83 (2006).   DOI
21 H. Ishida and S. Ohbam, Polymer, 46, 5588 (2005).   DOI   ScienceOn
22 A. E. Hoyt and B. C. Benicewicz, J. Polym. Sci. Part A: Polym. Chem., 28, 3403 (1990).   DOI
23 A. E. Hoyt and B. C. Benicewicz, J. Polym. Sci. Part A: Polym. Chem., 28, 3417 (1990).   DOI
24 H. Korner, A. Shiota, C. K. Ober, and M. Laus, Chem. Mater., 9, 1588 (1997).   DOI   ScienceOn
25 W. Mormann and J. G. Zimmermann, Macromolecules, 29, 1105 (1996).   DOI   ScienceOn
26 Y.-H. Ahn and J.-H. Chang, Polym. Adv. Technol., 19, 1479 (2008).
27 Y.-H. Ahn, M.-S. Jung, and J.-H. Chang, Mater. Chem. Phys., 123, 177 (2010).   DOI   ScienceOn
28 H.-G. Moon, M.-S. Jung, and J.-H. Chang, Macromol. Res., 19, 2 (2011).   DOI   ScienceOn
29 T. S. Chung, M. Cheng, P. K. Pallathadka, and S. H. Goh, Polym. Eng. Sci., 39, 953 (1999).   DOI
30 H. Ramathal and A. Lawal, J. Appl. Polym. Sci., 89, 2457 (2003).   DOI   ScienceOn
31 P. Sukananta and S. Buallek-Limcharoen, J. Appl. Polym. Sci., 90, 1337 (2003).   DOI   ScienceOn
32 H. S. Chang, T. Y. Wu, and Y. Chen, J. Appl. Polym. Sci., 83, 1536 (2002).   DOI   ScienceOn
33 J.-I. Jin and C. S. Kang, Prog. Polym. Sci., 22, 937 (1997).   DOI   ScienceOn
34 E. Somma and M. R. Novbil, Macromol. Symp., 228, 71 (2005).   DOI   ScienceOn
35 Y.- W. Kwon, D. H. Choi, and J.- I. Jin, Polymer(Korea), 29, 523 (2005).
36 B. K. Chen, S. Y. Tsay, and J. Y. Chen, Polymer, 46, 8624 (2005).   DOI   ScienceOn
37 C. Ortiz, R. Kim, E. Rodighiero, C. K. Ober, and E. J. Kramer, Macromolecules, 31, 4074 (1998).   DOI   ScienceOn
38 A. Jankowiak, A. Januszko, B. Ringstrand, and P. Kaszynski, Liq. Cryst., 35, 65 (2008).   DOI   ScienceOn
39 W. Mormann, M. Brocher, and P. Schwarz, Macromol. Chem. Phys., 198, 3615 (1997).   DOI   ScienceOn