• Title/Summary/Keyword: 열 불안정성

Search Result 144, Processing Time 0.023 seconds

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Investigation of Premixed Flame Instability with Heat and Momentum Losses (열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 관한 연구)

  • Kang Sang Hun;Baek Seung Wook;Im Hong Geun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.101-119
    • /
    • 2005
  • For MEMS applications, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by high-fidelity numerical simulations. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

수직 관다발형 비등관에서의 이상 유동 불안정성 특성 해석

  • 황대현;유연종;김긍구;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.463-468
    • /
    • 1998
  • 수직 관다발형 비등관에서의 밀도파 진동 및 유동 폭주형 이상유동 불안정성을 해석하기 위하여 선형화 기법 및 D-partition 방법론에 근거한 해석 코드(ALFS)를 개발하고 기존 실험자료 분석을 통해 코드의 예측 성능을 평가하였다. 그 결과 이상유동이 평형상태에 있는 것으로 가정하는 가장 단순한 모델인 HEM은 전반적으로 유동 불안정성 발생 시점의 열출력을 실험치보다 약 20% 정도 낮게 예측하였으며, 이상 유동의 속도 및 온도의 비평형 상태를 고려하는DEM과 DNEM에 의한 예측 결과는 7∼15%의 평균 오차 범위에서 실험 자료를 예측하는 것으로 나타났다.

  • PDF

Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 불안정성 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.857-864
    • /
    • 2012
  • A linear stability analysis of a diffusion flame with radiation heat loss is performed to identify linearly unstable conditions for the Damk$\ddot{o}$hler number and radiation intensity. We adopt a counterflow diffusion flame with unity Lewis number as a model. Near the kinetic limit extinction regime, the growth rates of disturbances always have real eigenvalues, and a neutral stability condition perfectly falls into the quasi-steady extinction. However, near the radiative limit extinction regime, the eigenvalues are complex, which implies pulsating instability. A stable limit cycle occurs when the temperatures of the pulsating flame exceed the maximum temperature of the steady-state flame with real positive eigenvalues. If the instantaneous temperature of the pulsating flame is below the maximum temperature, the flame cannot recover and goes to extinction. The neutral stability curve of the radiation-induced instability is plotted over a broad range of radiation intensities.

현상적 화염 모델을 이용한 복사 열속 응답 함수의 수치적 계산

  • 김성인;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.25-25
    • /
    • 1999
  • 응답 함수는 추진제의 연소 불안정성을 예측하는데 사용되는 중요한 측정 방법중 하나이다. 복사 열속과 압력은 연소 불안정을 일으키는 주요인으로 알려져 있다. 최근에는 레이저 기술의 발달로 비접촉 방식으로 외부에서 연소장을 교란하여 불안정성을 판단하는 실험 연구가 많이 이뤄지고 있다. 이러한 실험 연구에 대한 해석 및 예측을 위하여 많은 연구자들이 이론 응답 함수를 구하려는 노력들을 하고 있다. De Luca 등이 복사열에 대한 응답 함수를 제안한데 이어 Brewster 등은 QSHOD 가정과 추진제 내부로의 복사열 흡수비를 고려하여 응답 함수를 구하였다 Lee 등은 ZN 방법을 사용하여 Brewster의 응답 함수를 재계산 하였다. 이와 같은 이론 응답 함수들은 연소 불안정성에 대한 유용한 정보들을 제공하였음에도 불구하고, 현상을 너무 단순화하였다는 한계를 가지고 있다.

  • PDF

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

An Experimental Study on Longitudinal Instability Characteristics with Injector Type in Model Gas Turbine Combustor (모델 가스터빈 연소기에서 인젝터 형태에 따른 종-방향 불안정성 특성에 관한 실험적 연구)

  • Ahn, Jihwan;Kang, Yeonse;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.12-23
    • /
    • 2021
  • In this study, the combustion instability characteristics of low-swirl injector and high-swirl injector is compared by model gas turbine combustor. To compare of unstable behavior in high-swirl injector and low-swirl injector, we performed lots of measurement of combustion instability, with variable of equivalence ratio, combustor length and injector type. The results shown that longitudinal instability occur dominantly in model gas turbine combustor. In addition, it was found that high-swirl injector has more wide range of unstable regime than low-swirl injector. The blockage ratio what one of a parameter in low-swirl injector has not much effected in aspects of overall combustor behavior. Also, revealed that combustion instability occurred in the same combustor length has same properties, regardless of the injector type.

Instability Analysis of Natural Convection Flow along Isothermal Vertical Cylindrical Surfaces (등온 수직 원통표면을 연하여 흐르는 자연대류 유동의 파형 불안정성)

  • 유정열;윤준원;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 1989
  • A stability problem on wave instability of natural convection flow along isothermal vertical cylindrical surfaces has been formulated, accounting for the non-parallelism of the basic flow and thermal fields. Then the problem is solved numerically under the simplifying assumption of the parallelism of the basic flow quantities. It is shown that the flow corresponding to the same characteristic boundary layer thickness becomes more stable as the value of the curvature parameter increases. The stability characteristics for Pr=0.7 appear to be more sensitive to the curvature parameter than those for Pr=7.

Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석)

  • Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.42-50
    • /
    • 2013
  • Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.