• Title/Summary/Keyword: 열탄성 영역

Search Result 32, Processing Time 0.035 seconds

Propagation of Bulk Longitudinal Waves in Thin Films Using Laser Ultrasonics (레이저 초음파를 이용한 체적종파의 박막 내 전파특성 연구)

  • Kim, Yun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.266-272
    • /
    • 2016
  • This paper presents the investigation of the propagation behavior of bulk longitudinal waves generated by an ultrafast laser system in thin films. A train of femtosecond laser pulses was focused onto the surface of a 150-nm thick metallic (chromium or aluminum) film on a silicon substrate to excite elastic waves, and the change in thermoreflectance at the spot was monitored to detect the arrival of echoes from the film/substrate interface. The experimental results show that the film material characteristics such as the wave velocity and Young's modulus can be evaluated through curve-fitting in numerical solutions. The material properties of nanoscale thin films are difficult to measure using conventional techniques. Therefore, this research provides an effective method for the nondestructive characterization of nanomaterials.

Boundary Element Analysis of Singular Residual Thermal Stresses in A Fiber-Reinforced Unifirectional Viscoelastic Laminate (섬유가 보강된 단일방향 점탄성 복합재료에 발생하는 특이 잔류 열응력의 경계요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.181-187
    • /
    • 1996
  • This paper concerns the singular thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate model induced during cooling from cure temperature down to room temperature. Time-domain boundary element method is employed to investigate the nature of residual thermal stresses at the interface. Numerical results show that very large stress gradients are present at the interface corner and such stress singularity might lead to local yielding or fiber-matrix debonding.

  • PDF

Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

Prediction of Steady-State Stresses within Heat Affected Zone Due to Creep Mismatch in Welded Straight Pipes (직관 용접부의 크리프 특성 불균일에 따른 열영향부 정상상태 응력 예측)

  • Han, Jae-Jun;Kim, Sang-Hyun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.405-412
    • /
    • 2013
  • This paper reports the steady-state stresses within the heat affected zone (HAZ) of a welded straight pipe subject to creep. The creep constants and exponent are varied systematically to see the effect of various mismatches in creep properties on the steady-state creep stresses, via detailed two-dimensional finite element (FE) creep analyses. The weldments consist of the base metal and weld metal with the HAZ, which are characterized using the idealized power creep laws with the same creep exponent. The internal pressure and axial loading are considered to see the effect of the loading mode. To quantify the creep stresses, a creep mismatch factor is introduced as a function of the creep constants and exponent. It is concluded that the ratio of the section-averaged stresses for a mismatched case to those for an evenmatched case are linearly dependent on the mismatch factor. The results are compared with the FE results, including the Type IV region, as well as the R5 procedure.

Collinear cracks in a layered structure with a thermoelastically graded interfacial zone under thermal shock (열충격하 적층체의 열탄성 구배기능 계면영역을 고려한 동일선상 복수균열 해석)

  • Choi, Hyung-Jip;Jin, Tae-Eun;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.779-789
    • /
    • 1998
  • In this paper, the thermal shock responses of collinear cracks in a layered medium are investigated based on the uncoupled, quasi-static plane thermoelasticity. The medium is modeled as a bonded structure composed of a surface layer and a semi-infinite substrate. Between these two dissimilar homogeneous constituents, a functionally graded interfacial zone exists with the nonhomogeneous features of continuously varying thermoelastic properties. Three cracks are assumed to be present in the layered medium, one in each one of the constituent materials, aligned collinearly normal to the nominal interfaces. A system of singular integral equations is solved, subjected to the forcing terms of equivalent transient thermal tractions acting on the locations of cracks via superposition. Main results presented are the transient thermal stress intensity factors to illustrate the parametric effects of various geometric and amterial combinations of the medium with the thermoelastically graded interfacial zone and the collinear cracks.

Fluidelastic Instability Analysis of the U-Tube Bundle of a Recirculating Type Steam Generator (재순환식 증기발생기 U-튜브군에 대한 유체탄성 불안정 해석)

  • 조종철;이상균;김웅식;신원기;은영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.200-214
    • /
    • 1993
  • This paper presents the results of fluidelastic instability analysis performed for the U-tube bundle of a Westinghouse model 51 steam generator, one of the recirculating types designed at an early stage, in which the principal region of external cross-flow is associated with the U-bend portion of tube. The prerequisites for this analysis are detailed informations of the secondary side flow conditions in the steam generator and the free vibration behaviours of the U-tubes. In this study, the three-dimensional two-phase flow field in the steam generator has been calculated employing the ATHOS3 steam generator two-phase flow code and the ANSYS engineering analysis code has been used to calculate the free vibration responses of specific U tubes under consideration. The assessment of the potential instability for the suspect U-tubes, which is the final analysis process of the present work, has been accomplished by combining the secondary side velocity and density distributions obtained from the ATHOS3 prediction with the relative modal displacement and natural frequency data calculated using the ANSYS code. The damping of tubes in two-phase flow has been deduced from the existing experimental data by taking into account the secondary side void fraction effect. In operation of the steam generator, the tube support conditions at the tube-to-tube support plate intersections due to either tube denting degradation or deposition of tube support plate corrosion products or ingression of dregs. Thus, various hypothetical cases regarding the tube support conditions at the tube-to-tube support plate intersections have been considered to investigate the clamped support effects on the forced vibration response of the tube. Also, the effect of anti-vibration bars support in the curved portion of tube has been examined.

Thermal Properties of Polyurethane Elastomers Prepared with MBCA/DMTDA Mixture as Curing Agent (MBCA/DMTDA 혼합경화제를 이용한 폴리우레탄 탄성체의 열적 성질)

  • Ahn, Won Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.670-675
    • /
    • 2016
  • Both melting temperature and enthalpy of MBCA/DMTDA mixtures were measured as a function of DMTDA compositions using DSC. The thermal properties of polyurethane elastomer samples prepared with MBCA, DMTDA, and 40/60 MBCA/DMTDA mixture as curing agents were also observed using TGA. MBCA and DMTDA showed good miscibility over the entire composition range, exhibiting individual DSC melting peaks. Peak temperatures were non-linearly reduced as DMTDA concentrations increased, being approximately $60^{\circ}C$ in the case of the 40/60 MBCA/DMTDA mixture. Furthermore, melting enthalpy of the mixture was calculated as 3.8 J/g, which was only 4.3% compared to 87.3 J/g of MBCA. Based on these results, crystallization of the mixture was considered to occur very slowly, and the fluidic gel-state of the mixture was visually confirmed to be maintained over 5 days at room temperature. Thermal decomposition of polyurethane elastomer prepared with 40/60 MBCA/DMTDA curative started at about $190^{\circ}C$, which is similar to that observed for DMTDA, only except decomposition behavior over higher temperature of $400^{\circ}C$.

Nondestructive Defect Detection in Two-dimensional Anisotropic Composite Elastic Bodies Using the Boundary Element Method (경계 요소법을 이용한 2차원 비등방성 복합재료 탄성체의 비파괴 결함 추정)

  • 이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • In this paper, the defects of two-dimensional anisotropic elastic bodies are identified by using the boundary element method. The use of numerical models that contain only boundary integral terns reduces the dimensionality of the problem by one. This advantage is particularly important in problems such as crack mechanics. Avoiding domain meshing is also particularly advantageous in the solution of inverse problems since it overcomes mesh perturbations and simplifies the procedure. In this paper, nondestructive approaches for the existing isotropic materials are extended to analyze the elastic bodies made of anisotropic materials such as composites. After verifying that the proposing boundary element model is in good agreement with numerical results reported by other investigators, the effect of noise in the measurements on the identifiability is studied with respect to different design parameters of layered composites. Sample studies are carried out for various layup configurations and loading conditions. The effects of the layup sequences in detecting flaw of composites is explored in this paper.

Study of the Friction Force Measurements According to the Rolling-Sliding Ratios under the Condition of Elastohydrodynamic Lubrication (구름-미끄럼 속도비에 따른 탄성유체윤활영역에서 유막두께와 마찰력 측정연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.225-230
    • /
    • 2004
  • Most studies of elsatohydrodynamic lubrication are oriented only to the measurement of film thickness itself with optical interferometer. In order to exactly investigate the tribological characteristics of a certain lubricant, it is also important to get the information of traction behaviors as well. In this work, we developed a device for measuring the friction force of ehl contact condition as well as the film thickness. To verify the validity of the measuring system, the friction forces and film thicknesses under ehl condition are simultaneously measured with the variations of additive ratios of viscosity index improvers which cause non-linear tendencies of film thickness to contact velocity.

Friction Force Measurement of Elastohydrodynamic Lubrication with Viscosity Index Improvers (탄성유체윤활 영역에서 점도지수 향상제의 첨가량에 따른 마찰력 측정연구)

  • Kong, Hyun-Sang;Jang, Si-Youl;Park, Kyoung-Kuhn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.267-271
    • /
    • 2002
  • Most studies of elsatohydrodynamic lubrication are oriented only to the measurement of film thickness itself with optical interferometer. In order to exactly investigate the characteristics of a certain lubricant, it is also important to get the information of traction force as well. In this work, we developed the device for measuring friction force of ehl contact condition together with the film thickness. To verify the validity of the measuring system, the friction force and film thickness under ehl condition are measured with the variation of additive ratios of viscosity index Improvers.

  • PDF