DOI QR코드

DOI QR Code

Prediction of Steady-State Stresses within Heat Affected Zone Due to Creep Mismatch in Welded Straight Pipes

직관 용접부의 크리프 특성 불균일에 따른 열영향부 정상상태 응력 예측

  • Received : 2012.09.17
  • Accepted : 2012.11.28
  • Published : 2013.03.01

Abstract

This paper reports the steady-state stresses within the heat affected zone (HAZ) of a welded straight pipe subject to creep. The creep constants and exponent are varied systematically to see the effect of various mismatches in creep properties on the steady-state creep stresses, via detailed two-dimensional finite element (FE) creep analyses. The weldments consist of the base metal and weld metal with the HAZ, which are characterized using the idealized power creep laws with the same creep exponent. The internal pressure and axial loading are considered to see the effect of the loading mode. To quantify the creep stresses, a creep mismatch factor is introduced as a function of the creep constants and exponent. It is concluded that the ratio of the section-averaged stresses for a mismatched case to those for an evenmatched case are linearly dependent on the mismatch factor. The results are compared with the FE results, including the Type IV region, as well as the R5 procedure.

본 논문은 크리프 파단 수명평가에 주요인자인 정상상태 크리프 응력을 직관 용접부에 대해 정량화한다. 모재와 용접부의 크리프 특성 불균일이 응력에 미치는 영향을 체계적으로 분석하기 위해, 다양한 용접부 불균일에 대해 이차원 유한요소 크리프 탄성해석을 수행하였다. 용접부는 열영향부를 고려하였으며 각각의 재료는 이상화된 탄성-멱 크리프 법칙을 따른다고 가정하였다. 하중에 따른 영향을 보기 위해 내압과 인장하중에 대해 연구를 수행하였다. 용접부 크리프 응력의 정량화를 위해 크리프 불균일 지수를 도입하였으며, 무차원화된 단면평균응력과 선형적인 관계를 확인하였다. 불균일 지수로 정량화한 응력과 Type IV 영역을 모사한 용접부의 유한요소해석 결과 및 영국전력의 R5 문헌값의 비교를 통해 연구결과의 유효성을 검증하였다.

Keywords

References

  1. Webster, G. A. and Ainsworth, R. A., 1994, High Temperature Component Life Assessment, Chapman & Hall, London, pp. 10-49.
  2. Parker, J. D., 1995, "Creep Behaviour of Low Alloy Steel Weldments," International Journal of Pressure Vessels and Piping, Vol. 63, No.1, pp. 55-62. https://doi.org/10.1016/0308-0161(94)00051-J
  3. Roberts, B. W., Ellis, F. V. and Viswanathan, R., 1985, "Utility Survey and Inspection for Life Assessment of Elevated Temperature Headers," Proc. of the American Power Conference, Chicago, IL, pp. 289-301.
  4. Viswanathan, R. and Dooley, R. B., 1986, "Creep Life Assessment Techniques for Fossil Power Plant Boiler Pressure Parts," Proc. of International Conference on Creep, Tokyo, pp. 349-359.
  5. Hyde, T. H., Sun, W. and Williams, J. A., 2003, "Creep Analysis of Pressurized Circumferential Pipe Weldments - A Review," Journal of Strain Analysis for Engineering Design, Vol. 38, No. 1, pp. 1-30. https://doi.org/10.1243/030932403762671854
  6. R5, 2003, Assessment Procedure for the High Temperature Response of Structures, Issue 3, British Energy Generation Ltd, UK.
  7. Goldthorpe, M. R., 2008, "Effect of Weld Mismatch on Uncracked Stresses, Reference Stresses and C* Estimates for Cracks in CMV HAZ Materials," British Energy Generation report, E/REP/BDBB/0046/GEN/ 04, British Energy Generation Limited, UK.
  8. Law, M. and Payten, W., 1997, "Weld Performance under Creep Using Finite Element Modelling," International Journal of Pressure Vessels and Piping, Vol. 72, No. 1, pp. 45-49. https://doi.org/10.1016/S0308-0161(97)00008-2
  9. Lee, K.-H., Kim, Y.-J., Yoon, K.-B., Nikbin, K. and Dean D., 2010, "Quantification of Stress Redistribution due to Mismatch in Creep Properties in Welded Branch Pipes," Fatigue & Fracture of Engineering Materials & Structures, Vol. 33, No. 4, pp. 238-251. https://doi.org/10.1111/j.1460-2695.2009.01433.x
  10. Han, J.-J., Lee, K.-H., Kim, Y.-J., Nikbin, K. and Dean D., 2011, "Effects of Geometry and Combined Loading on Steady-State Creep Stresses in Welded Branches," International Journal of Pressure Vessels and Piping, Vol. 88, No. 10, pp. 395-402. https://doi.org/10.1016/j.ijpvp.2011.07.002
  11. R6, 2010, Assessment of the Integrity of Structures Containing Defects, Revision 4, British Energy Generation Ltd, UK.
  12. Oh, C.-K., Kim, Y.-J., Park, J.-M., Kim, J.-S. and Jin T.-E., 2007, "Effect of Structural Geometry and Crack Location on Crack Driving Forces for Cracks in Welds," Engineering Fracture Mechanics, Vol. 74, No. 6, pp. 912-931. https://doi.org/10.1016/j.engfracmech.2006.08.011
  13. Abaqus 6.11, Analysis User's Manual, 2011, Dassault Systemes Simulia Corp., Providence, RI.
  14. Laham, S. A., 1999, "Large Bore Branch Test Creep Analysis," British Energy Generation report, EPD/GEN/REP/0371/98, British Energy Generation Limited, UK.
  15. Baker, A. J., 2000, "Stress Redistribution Factors for 21/4Cr1Mo Weld Metal in 1/2Cr1/2Mo1/4V Weldments," British Energy Generation report, EPD/GEN/REP/0514/99, British Energy Generation Limited, UK.
  16. Dean, D. and Kiff, S. J., 2000, "Creep Deformation Data and Weld Redistribution Factors for 1/2Cr1/2Mo1/4V Type IV Zones," British Energy Generation report, EPD/GEN/REP/0443/99, British Energy Generation Limited, UK.
  17. Easterling, K., 1992, Introduction to the Physical Metallurgy of Welding, Butterworth-Heinemann, London.
  18. Antaki, G., 2005, Fitness-for-Service and Integrity of Piping, Vessels and Tanks, McGraw-Hill, New York.
  19. Walters, D. J. and Cockcroft, R. D. M., 1972, "A Stress Analysis and Failure Criteria for High Temperature Butt Welds," Proc. of International Institute of Welding Colloquium on Creep Behaviour of Welds in Boilers, Pressure Vessels and Piping, Toronto.
  20. Walters, D. J., 1976, "The Stress Analysis of Cylindrical Butt Welds Under Creep Conditions," CEGB Note, RD/B/N3716,Central Electricity Generating Board, UK.