• Title/Summary/Keyword: 열처리기술

Search Result 819, Processing Time 0.031 seconds

Effects of Hydrothermal Pretreatment on the Nutritional Values and In Vitro Fermentation Characteristics of Tall Fescue (Festuca arundinacea) and Corn Silage (열수 전처리에 따른 톨페스큐와 옥수수 사일리지의 영양적 가치와 in vitro 발효특성에 미치는 영향)

  • Kim, Dong Hyeon;Son, Jun Kyu;Lee, Ji Hwan;Kim, Sang Bum;Park, Beom Young;Kim, Doo San;Jang, Gul Won;Lim, Hyun Joo;Hur, Tai Young;Kim, Eun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.468-476
    • /
    • 2021
  • This study examined the effects of a hydrothermal pretreatment (HP) on the nutritional values and in vitro fermentation characteristics of tall fescue and corn silage. This study was conducted through a factorial design of 2 (control or HP) × 2 (hay; tall fescue or silage; corn). For the HP, forage was placed into a glass bottle with 20% w/v of water, and the glass bottle was sealed and heated to reach a temperature of 121℃ (0.12 MPa). The solid residue and liquid were collected and oven-dried at 65℃ for three days. The dried materials were tested for in vitro fermentation at 39℃ for 24 and 48 h. The content of ADF increased significantly regardless of the forage type. After in vitro incubation for 24 h, the total VFA content was significantly lower after HP, regardless of the forage type (p ≤ 0.05), and the propionate concentration was increased in corn silage with HP (p ≤ 0.05). After 48 hours of in vitro incubation, the propionate content increased significantly (p ≤ 0.03) in corn silage with HP (p ≤ 0.05), but the butyrate content decreased significantly (p ≤ 0.05). There was no change in the in vitro dry matter and neutral detergent fiber digestibility by HP regardless of the forage type. Therefore, the use of hydrothermally pretreated corn silage could be advantageous for the supply of energy for ruminants.

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Storage and Acceptability of a Smoked Sebastes schlegeli Product (훈연처리에 의한 조피볼락의 저장성 및 기호도)

  • Lee, In-Sung;Kim, In-Cheol;Chae, Myoung-Hee;Chang, Hae-Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1458-1464
    • /
    • 2007
  • This study was conducted to develope a new type of ready-to-eat smoked Sebastes schlegeli product with high acceptability and extended shelf-life. A Sebastes schlegeli was salted at 4% salt concentration for 6 hr at $4^{\circ}C$. The cold smoking conditions for the salted Sebastes schlegeli consisted of drying for 2 hr at $22{\sim}24^{\circ}C$ followed by smoking for 2 hr at $22{\sim}24^{\circ}C$. The warm smoking conditions for the salted Sebastes schlegeli consisted of drying for 2 hr at $22{\sim}24^{\circ}C$, smoking for 2 hr at $22{\sim}24^{\circ}C$, and smoking again for 30 min at $47{\sim}50^{\circ}C$. The rancidity of the smoked Sebastes schlegeli did not change after 1 year storage at $-20^{\circ}C$ by monitoring the iodine value, peroxide value, and acid value. The number of viable cells in the cold and warm smoked samples were counted as $7.4{\times}10^5$ and $6.2{times}10^5$ CFU/g, respectively. Viable cells were not detected after 1 year of storage at $-20^{\circ}C$. The sensory evaluations of the processed Sebastes schlegeli showed that elastic texture increased with smoking as compared to with salting. There were no significant differences between cold and warm smoking in terms of sweetness, elastic texture, color, and smoke flavor. However, for overall acceptability, preference were in the oder of cold smoked, warm smoked, and salted.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft (현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구)

  • Lim, Ock-Soo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.241-250
    • /
    • 2004
  • In this research, the copper alloy plates C2200, C5210, C7701, C8113 were selected to make datum and to identify further usage of metal craft experimentation. For its experimentation, the general welding and TIG welding methods were researched; for 2nd experimentation, the Reticulation and Electroforming skill's differences in color and temperature were researched. With these methods 3 different kinds of works are introduced for sample studies. For this research, Dr. Lee, Dong-Woo who works in Poongsan Metal Co, supported 4 kinds of copper alloy metals. Which are Commercial bronze (Cu-Zn), Deoxidiged Copper(Cu-Sn-P), Nickel Silver (Cu-Ni-Zn), and White Bronze (Cu-Ni); they were applied partly and wholly by the method of Laminatin, Reticulation, Fusing, and Electroforming skills. In case of C2200, the brass, the A. C. TIG welding method is better under 2mm slight plate; the D.C. TIG welding is better upper 2mm plate; and 250~300$^{\circ}C$ is recommended for remain heat treatment. In case of C5210, not having Hydrogen in high temperature return period, doesn't need Oxygen in high temperature and hardening in comparative high temperature neither, it is good for welding. It contains Sn 2-9% ad P 0.03-0.4% generally; and in accordance with the growth rate of Sn contain amount, the harden temperature boundary become broad. In case of cold moment after welding, they are recommended that higher speed TIG welding, smaller melting site and less than 200$^{\circ}C$ for pre-heating temperature. In case of C7701, the 10-20% Ni, 15-30% Zn are widely used.. If it is upper 30% Zn, it become (${\alpha}+{\beta}$) system and adhesive power rate become lower, and the productivity become lower in low temperature but the productivity become higher in high temperature. Nickel Silver's resistance of electricity is well; and the heatproof and incorrodibility is good, too. Lastly, in case of C8113, good at persistence in salty and grind; high in strength of high temperature. In case of white brass, contain 10-30% Nickel and hardened in high temperature and become single phrase. For these reason, the crystallization particles easily become large, if the resistance become higher small amount of Pb, P, S separation rate become higher.

  • PDF

Synthesis and Screening of the System $SrO-Gd_2O_3-Al_2O_3$Doped with Tb by Polymerized-Complex Combinatorial Chemistry (고분자 착체 조합 화학법을 이용한 Tb이 첨가된 $SrO-Gd_2O_3-Al_2O_3$계 형광물질의 합성 및 탐색)

  • Jeong, Yang Sun;Kim, Chang Hae;Park, Hee Dong;Park, Joon Taik;Kang, Sung Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.461-469
    • /
    • 2001
  • The combinatorial approach has been applied to discover and optimize the composition of the novel or enhanced materials. In this study, we screened the optimum composition of the system SrO-Gd$_2$O$_3$-Al$_2$O$_3$ doped with $Tb^{3+}$ by a polymerized-complex combinatorial chemistry method. Mixtures with compositions of Sr, Gd and Al component that is in the range from 0 to 1 in about 0.05 increments could be tested. The sample powders were synthesized by a polymerized complex method. To prepare appropriately polymeric precursors, we used the metallic nitrates, citric acid and ethylene glycol. The luminescence properties of the synthesized powders are investigated using the UV and VUV (Vacuum-UV: 147 nm) photoluminescence spectrometer. In addition, the crystallinity and morphology of powder were monitored by X-ray diffraction spectrometer and scanning electron microscopy. In result of VUV PL works, there are good luminescent samples with the composition of 0.595 < x < 0.733 and 0.016 < y < 0.017 in Gd1-x-yAlxTbyO$\delta$ and 0.049 < x < 0.064 and 0.02 < y < 0.039 in $Sr_xAl_{1-x-y}Tb_yO_$\delta$$, their materials can be applicable to plasma display panels as the green phosphor.

  • PDF

Effect of Hot-water Dipping on Inhibiting Red Discoloration of Basal Part in Chicon (열수 침지 처리가 치콘 절단면의 적변 억제에 미치는 영향)

  • Jung, Hyun Jin;Kang, Ho-Min
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.353-358
    • /
    • 2014
  • Hot water dipping test was conducted for chicon to restrict red discoloration of its basal part which impairs the product value during sales. Hot water dipping treatment was given to chicon for 4 min and for 8 min at $38^{\circ}C$ and for 2 min and 4 min at $42^{\circ}C$, and for 1 min and 2 min at $45^{\circ}C$, along with control (for one min at $20^{\circ}C$). The red discoloration indices of basal part of chicon during sensory evaluation on the sixth day of storage under the storage temperature at $10^{\circ}C$ was lower at $42^{\circ}C$ for 2 min, $42^{\circ}C$ for 4 min and $45^{\circ}C$ for 1 min treatments. The color change value of the basal part in chicon measured by colorimeter showed that the lowest ${\Delta}a^*$ and ${\Delta}h$ were maintained in the basal part of chicon treated at $42^{\circ}C$ for 2 min. Whereas, color changes in $42^{\circ}C$ for 2 min and $45^{\circ}C$ for 1 min treatments were significantly low as compared with that of control. The contents of total phenolic compounds which are the substances that cause red discoloration of basal part in chicon were lowest at $42^{\circ}C$ for 2 min, $42^{\circ}C$ for 4 min and $45^{\circ}C$ for 1 min treatments. The activity of phenylalanine ammonia lyase (PAL) resposible for in the synthesis of phenolic substances was the least in $42^{\circ}C$ for 2 min treatment. Whereas, PAL activity of the chicons treated a t $42^{\circ}C$ for 2 min and at $45^{\circ}C$ for 1 min were significantly lower than that of control. However, red discoloration was progressed as similar level with that of control in the basal part of chicon at $45^{\circ}C$ for 2 min. The contents of total phenolic compounds and PAL activity in this treatment were not significantly different from those in control. The polyphenol oxidase (PPO) activity which causes red discoloration of cut tissues was low in all the treatments including $42^{\circ}C$ and $45^{\circ}C$ treatment at which no inhibition effects of the red discoloration of basal part of chicon were observed. When the correlation coefficient between each investigated index was tested, most of them showed high correlation except the PPO activity and particularly and the red discoloration index and sensory evaluation ${\Delta}h$ values, and PAL activity and total phenolic compounds content were $r=0.927^{**}$, and $r=0.942^{**}$, respectively.

Study on the Manufacturing techniques & Conservation of Iron Pot from Cheonmachong Ancient Tomb (천마총 출토 철부(鐵釜)의 제작기법 및 보존처리)

  • Lee, Seung Ryul;Shin, Yong Bi;Jung, Won Seob
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • It's shown how to proceed the study on Manufacturing techniques & Conservation to the Iron Pot from Cheonmachong Ancient Tomb(the 155th Tomb in Hwangnam-dong). In order to investigate manufacturing techniques of the Iron Pot, some parts of the relic were gathered. After mounting, polishing and etching on the relic, analyzing the metal microstructure was conducted. Also it's conducted a SEM-EDS analysis on the nonmetallic inclusion. White iron structure was observed in the metallurgical structure inspection, SEM-EDS analysis. It seems to be dried slowly at room temperature after casting, doesn't look as particular heat treatment to improve brittleness. It is estimated that it's as the handle seam side were verified about 3cm inch wide, 1.5 thick in center of body, so 2 separate half-completed products was cast with width-type mould. The manufacturing techniques Using white cast iron structure, width-type mould are observable to the Iron Pot excavated from Sikrichong Ancient Tomb & Hwangnamdaechong grand Ancient Tomb around those were constructed the same time. It's able to recognize that it's almost identical manufacturing techniques at that time. Conservation is generically following those are survey of pretreatment, foreign material removal, stabilization, restoration and color matching in the order. cleaning & drying were added to the process as occasion demands. The strengthening treatment were difficult with artifact's volume, low concentration Paraloid NAD-10 solution was spread two or three times with a brush, surface hardening also came up with 15wt% Paraloid NAD-10 solution after the conservation was complete. There were connection & restoration for the restoration to the damage after modeling forms that it's similar to damaged parts by using the Fiber Reinforced Plastic resins(POLYCOAT FH-245, mold laminated type). Throughout this research, capitalizing on accumulations of measurements about the production technique of Iron Pot in the time of the fifth and 6th centuries is no less important than the Iron artifact's conservation for a better study in the future.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.