• Title/Summary/Keyword: 열적 성질

Search Result 414, Processing Time 0.026 seconds

Synthesis and Characterization of Polyamides and Polyester Prepareds by Palladium-catalyzed CO Insertion Reaction (고강도 엔지니어링 플라스틱재료의 합성 - I. Palladium-catalyzed CO Insertion 반응에 의한 전방향족 Polyamides와 Polyester의 합성 -)

  • Jun, Chang Lim;Park, Sang Bok;Park, Nae Joung;Yum, Sung Bai
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.694-700
    • /
    • 1992
  • Aromatic polyamides and polyesters with fexible spacers are prepared by Heck reaction with palladium catalysts In presence of carbon monoxide gas. Dichlorobis(triphenyl phosphine) plladium(II) ($PdCl_2(PPh_3)_2$) and palladium chloride ($PbCl_2$) are used as catalysts. Polyamides and polyesters prepared by his polymerization system have similar transition temperatures. Flexible spacer substituted on phenylene units are varied from hexyl to hexadecyl, the length of spacers effected on transition temperatures of substituted polymers.

  • PDF

고온가압소결한 SiCf/SiC 복합체에서 보호층으로써의 SiC 층이 기계적 물성에 미치는 영향

  • Jeong, Myeong-Hun;Kim, Dae-Jong;Kim, Won-Ju;Yun, Sun-Gil;Park, Ji-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • 고온가압소결으로 제조된 SiCf/SiC 복합체는 부식과 침식에 강하고 우수한 열적 성질과 고온에서의 높은 기계적 강도를 유지하는 장점을 가진 복합체다. 복합체의 파괴인성은 섬유와 기지 사이에 존재하는 열분해탄소 (PyC) 계면층에 의해 큰 영향을 받는데, 고온가압소결중 첨가되는 소결조제 ($Y_2O_3$, MgO, $Al_2O_3$)와 반응하여 계면이 손상되어 복합체의 기계적 특성치가 낮아지는 결과를 보였다. 본 연구에서는 계면의 손상을 보호하고자 PyC 계면상 위에 SiC 층을 증착하였는데 계면층과 SiC 층의 증착은 화학기상 증착법(CVD)을, 기지채움 공정은 전기영동법(EPD)과 고온가압소결방법(Hot Pressing)을 이용하여 복합체를 제조하였다. Tyranno-SA 섬유에 소스가스인 메탄을 열분해 하여 200nm 두께로 PyC 계면상을 증착하고, 두께를 달리하여 보호층으로써의 SiC 층을 single 과 double layer로 증착하였다. SiC 나노분말과 소결 첨가제인 $Y_2O_3$, $Al_2O_3$, MgO를 첨가한 슬러리를 전기영동법(EPD)을 이용하여 섬유내부에 슬러리를 함침시켰고, 이러한 프리폼을 $1750^{\circ}C$/20MPa의 조건으로 고온 가압소결 하여 $SiC_f$/SiC 복합체를 제조하였다. 이렇게 single layer와 double layer로 제조된 $SiC_f$/SiC 복합체에 대해 밀도와 미세구조를 관찰하였고, 기계적 특성을 비교하여 보호층으로써의 SiC 증착효과를 고찰하고자 하였다.

  • PDF

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings (Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성)

  • Ahn, Seung-Su;Park, Jong-Keuk;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.406-413
    • /
    • 2020
  • Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.

A Study on the Thermal Properties of Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$) Composite Materials (Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$)계 복합재료의 열적성질에 관한 연구)

  • Park, Sang-Joon;Jo, Won-Yong;Kang, Se-Seon;Lim, Yoon-Su;Kwon, Hyuk-Mu;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.342-349
    • /
    • 1993
  • The purpose of this study is to obtain basic information on the particle dispersion, the coefficient of thermal expansion and the thermal conductivity of compocasted Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$) composite. With increasing the content of SiC particles, the thermal expension coefficient and the thermal conductivity decrease. The coefficient of thermal expension between 20 and $300^{\circ}C$ is $21.3{\times}10^{-6}/^{\circ}C{\sim}18.0{\times}10^{-6}/^{\circ}C$ for the Al-Si alloys and $18.4{\times}10^{-6}/^{\circ}C{\sim}16.0{\times}10^{-6}/^{\circ}C$ for the composite with 10wt.% SiC. The thermal conductivity at $300^{\circ}C$ is $121{\sim}169W{\cdot}m^{-1}{\cdot}k^{-1}$ for the Al-Si alloys and $114{\sim}159W{\cdot}m^{-1}{\cdot}k^{-1}$ for the composite with 10wt.% SiC.

  • PDF

Synthesis and Characteristics of Aminated Poly(arylene ether sulfone) as Thermostable Anion Exchanger (내열성 음이온교환수지로서 Aminated Poly(arylene ether sulfone)의 합성과 물성)

  • 손원근;유현지;황택성;김동철;김상헌;송해영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this study, poly(arylene ether sulfone) (PAES) having thermal stability and excellent mechanical properties was synthesized to be useful for the matrix of anion exchange resin. $1^{\circ}$-Aminated poly(arylene ether sulfone) ($1^{\circ}$-APAES) was prepared by reduction reaction after lithiation of PAES. Then $3^{\circ}$-APAES was Prepared by alkylation of the amino group of $1^{\circ}$-APAES. The structures of PAES and APAESs were confirmed with FT-IR and $^1H-NMR$ spectroscopy. Also, thermal properties of the resins were characterized by DSC and TG analysis. The introduction of amine groups in PAES resulted in the increase of glass transition temperature and decrease of initial thermal degradation temperature. The ion exchange capacities of $1^{\circ}$-APAES and $1^{\circ}$-APAES were 1.19 and 1.45 meq/g, respectively.

Properties of PP/MWCNT Nanocomposite Using Pellet-Shaped MWCNT (펠렛형 MWCNT를 사용한 PP/MWCNT 나노복합체 물성 연구)

  • Jeong, Dong-Seok;Nam, Byeong-Uk
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Polypropylene/multi-walled carbon nanotube(PP/MWCNT) composites along with various MWCNT contents up to 20 wt% were prepared by a twin screw extruder. Nanocomposites having 20 wt% MWCNT as a master batch(M/B) were diluted with PP by way of melt compounding. The electrical/thermal conductivity, morphology, thermal/viscoelastic/mechanical properties were investigated with the variation of MWCNT contents. Also, we compared some properties between 1-step PP/MWCNT and the diluted PP/MWCNT composites. The percolation threshold of electrical and thermal conductivity was measured at about 3 wt% MWCNT. And conductivity of diluted PP/MWCNT composites were superior to those of PP/MWCNT composites. The non-isothermal crystallization temperature and thermal decomposition temperature appeared at higher temperatures with increasing MWCNT contents. Morphology showed that length of MWCNT in diluted PP/MWCNT composites was shortened by twice melt blending, which contributed to improve the tensile strength of PP/MWCNT composites.

Synthesis and Biodegradation Behavior of Poly(ethylene terephthalate) Oligomers (폴리(에틸렌 테레프탈레이트)(PET) 올리고머의 합성과 생분해 거동)

  • Lee, Chan-Woo;Chung, Jin-Do
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.198-202
    • /
    • 2009
  • Oligo(ethylene terephthalate)(OET), oligo(ethylene succinate-co-terephthalate)(OEST) and oligo(butylene succinate-co-terephthalate)(OBST), which are part of the poly(ethylene terephthalate)(PET) oligomer, were synthesized. Degradation test of oligomers carried out by the presence of lipase PS. There were two objectives in the experiment: first, to measure the weight remaining of the PET oligomer as increasing degradation time, and second to examine the degradation mechanism by analyzing the resulting degraded product. In the synthesis of OEST and OBST, by controlling the feed ratio of both OEST and OBST, we were able to obtain oligomer of different composition ratios. The various composition ratios resulted in oligomer of vastly different thermal properties. We observed that both OEST and OBST were degraded using lipase PS, but as the composition of terephthalic acid was increased, the lipase PS became less effective. We confirmed that the lipase PS easily decomposed polyester of the aliphatic compound.

Synthesis and Characterization of Thermoplastic Elastomer Poly(ether-b-amide) Containing Aromatic Moiety (방향족 구조가 포함된 열가소성 탄성체 Poly(ether-b-amide)의 합성 및 특성)

  • Lee, Ji Hun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.596-601
    • /
    • 2014
  • Polyamide (PA) oligomers, which are the hard segment of poly(ether-block-amide) (PEBA), presenting thermoplastic and high performance elastomeric properties were prepared by polycondensation between 4-aminobenzoic acid and 12-aminododecanoic acid. Subsequently PEBAs were obtained by addition polymerization of the PA oligomers and various molecular weights of poly(tetramethylene glycol) (PTMG). The structure of the final PEBA was identified by using FTIR and $^1H$ NMR and the thermal properties depending on changes in the structure of hard segment were collected by using DSC and UTM analysis. As the results, the melt temperature ($T_m$), the initial modulus, and the maximum strength of PEBAs increased with an increase in aromatic moiety up to 30% without reducing crystallinity.

Microscopic Studies of the Magnetic and Thermal Properties in Ba-ferrite Single Crystal (Ba-Ferrite 단결정의 자기적 및 열적 현상에 관한 미시적 연구)

  • Sur, J.C.;Choi, J.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.152-155
    • /
    • 2009
  • Ba-Ferrite single crystals were prepared and the magnetic and thermal properties were characterized by Mossbauer spectroscopy. The single crystal layer was cut in the c-axis and radiated to the surface by ${\gamma}$-rays for Mossbauer spectroscopy. We found out that the spin states in Fe ions were parallel to the ${\gamma}$-rays direction and the whole crystal bulk formed only one crystal with the same spin direction. $M\"{o}ssbauer$ spectra in single crystal have only 4 sets of 4 absorption lines in each Fe site when the ${\gamma}$-rays have the same radiation direction with the c-axis in the crystal, and there was no 2b-site spectrum. The zero absorption of 2b-site means that there was a fast diffusion motion in a double-well atomic potential at room temperature, in which bipyramidal Fe ions have the two minima at each side mirror plane.

Preparation and Characterization of PTMSP/PDMS-zeolite Composite Membranes for Gas Separation (기체분리를 위한 PTMSP/PDMS-zeolite 복합막의 제조 및 특성)

  • Kim, Na-Eun;Kang, Tae-Beom;Hong, Se Lyung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.342-351
    • /
    • 2012
  • In this study, PTMSP[poly(1-trimethylsilyl-1-propyne)]/PDMS[poly(dimethylsioxane)]-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes were made to incorporate zeolite into PTMSP/PDMS graft copolymer in order to improve the selectivity and thermal stability, the drop of permeability by physical aging effect during long period of time for the PTMSP membrane. To investigate the physico-chemical characteristics of composite membranes, the analytical methods such as FT-IR, $^1H$-NMR, TGA, SEM, and GPC have been utilized. The gas permeability and selectivity properties of $H_2$ and $N_2$ were evaluated. The permeability of the PTMSP/PDMS-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes than PTMSP/PDMS graft copolymer membrane increased, increased as zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as zeolite content increased. PTMSP/PDMS-NaA zeolite composite membrane showed better permeability and separation factor than PTMSP/PDMS-NaY zeolite composite membrane.