Browse > Article

Properties of PP/MWCNT Nanocomposite Using Pellet-Shaped MWCNT  

Jeong, Dong-Seok (Department of Applied Chemical Engineering, Korea University of Technology and Education)
Nam, Byeong-Uk (Department of Applied Chemical Engineering, Korea University of Technology and Education)
Publication Information
Polymer(Korea) / v.35, no.1, 2011 , pp. 17-22 More about this Journal
Abstract
Polypropylene/multi-walled carbon nanotube(PP/MWCNT) composites along with various MWCNT contents up to 20 wt% were prepared by a twin screw extruder. Nanocomposites having 20 wt% MWCNT as a master batch(M/B) were diluted with PP by way of melt compounding. The electrical/thermal conductivity, morphology, thermal/viscoelastic/mechanical properties were investigated with the variation of MWCNT contents. Also, we compared some properties between 1-step PP/MWCNT and the diluted PP/MWCNT composites. The percolation threshold of electrical and thermal conductivity was measured at about 3 wt% MWCNT. And conductivity of diluted PP/MWCNT composites were superior to those of PP/MWCNT composites. The non-isothermal crystallization temperature and thermal decomposition temperature appeared at higher temperatures with increasing MWCNT contents. Morphology showed that length of MWCNT in diluted PP/MWCNT composites was shortened by twice melt blending, which contributed to improve the tensile strength of PP/MWCNT composites.
Keywords
MWCNT; electrical conductivity; thermal conductivity; morphology; mechanical property;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 D. McIntosh, V. N. Khabashesku, and E. V. Barrera, Chem. Mater., 18, 4561 (2006).   DOI   ScienceOn
2 Z. Zhou, S. Wang, L. Lu, Y. Zhang, and Y. Zhang, J. Polym. Sci. Part B: Polym. Phys., 45, 1616 (2007).   DOI   ScienceOn
3 L. Vaisman, G. Marom, and H. D. Wagner, Adv. Funct. Mater., 16, 357 (2006).   DOI   ScienceOn
4 M. A. Lopez Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005).   DOI   ScienceOn
5 D. Shi, J. Lian, P. He, L. M. Wang, F. Xiao, L. Yang, M. J. Schultz, and D. B. Mast, Appl. Phys. Lett., 83, 5301 (2003).   DOI   ScienceOn
6 T. Zeng, Trans. ASME, 123, 340 (2001).   DOI   ScienceOn
7 G. Chen, Int. J. Therm. Sci., 39, 471 (2003).
8 J. P. Salvetat, A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro', Phys. Rev. Lett., 82, 944 (1999).   DOI   ScienceOn
9 D. O. Kim and J. D. Nam, Prospectives of Industrial Chemistry, 9, 3 (2006).
10 P. Poetschke, A. R. Bhattacharyya, A. Janke, and H. Goering, Compos. Interfaces, 10, 389 (2003).   DOI   ScienceOn
11 T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules, 37, 7214 (2004).   DOI   ScienceOn
12 W. D. Zhang, L. Shen, I. Y. Phang, and T. Liu, Macromolecules, 37, 256 (2004).   DOI   ScienceOn
13 A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003).   DOI   ScienceOn
14 S. Ijima, Nature, 354, 56 (1991).   DOI
15 A. Samakande, P. C. Hartmann, V. Cloete, and R. D. Sanderson, Polymer, 48, 1490 (2007).   DOI   ScienceOn
16 Y. K. Lee, S. H. Jang, M. S. Kim, W. N. Kim, H. G. Yoon, S. D. Park, S. T. Kim, and J. D. Lee, Macromol. Res., 18, 241 (2010).   DOI
17 C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, Compos. Sci. Technol., 62, 1105 (2002).   DOI   ScienceOn
18 R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, 3838 (2001).   DOI   ScienceOn
19 P. Potschke, M. Abdel-Goad, I. Alig, S. Dudkim, and D. Lellinger, Polymer, 45, 8863 (2004).   DOI   ScienceOn
20 S. W. Kim, J. G. Kim, S. J. Park, and S. H. Lee, The Korean Physical Society, 49, 412 (2004).
21 T. H. Cho, S. D. Park, Y. S. Lee, and I. H. Baek, Korean Chem. Eng. Res., 42, 624 (2004).
22 J. Jin, M. Song, and F. Pan, Thermochim. Acta, 456, 25 (2007).   DOI   ScienceOn
23 R. Haggenmueller, J. E. Fischer, and K. I. Winey, Macromolecules, 39, 2964 (2006).   DOI   ScienceOn
24 E. J. Clark and J. D. Hoffmann, Macromolecules, 17, 878 (1984).   DOI
25 X. Chen, K. H. Yoon, C. Burger, I. Sics, D. Fang, B. S. Hsiao, and B. Chu, Macromolecules, 38, 3883 (2005).   DOI   ScienceOn
26 Y. Q. Xue, T. A. Tervoort, and P. J. Lemstra, Macromolecules, 31, 3075 (1998).   DOI   ScienceOn
27 J. H. Ko, J. C. Kim, and J. H. Chang, Polymer(Korea), 33, 97 (2009).
28 E. J. Siochi, D. C. Working, C. Park, P. T. Lillehei, J. H. Rouse, C. C. Topping, A. R. Bhattacharyya, and S. Kumar, Composites, Part B: Engineering, 35, 439 (2004).
29 A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath, Macromolecules, 36, 553 (2003).   DOI   ScienceOn
30 Y. J. Kang and T. A. Taton, J. Am. Chem. Soc., 125, 5650 (2003).   DOI   ScienceOn
31 K. Prashantha, J. Soulestin, M. F. Lacrampe, M. Claes, G. Dupin, and P. Krawczak, Polym. Lett., 2, 735 (2008).   DOI