• Title/Summary/Keyword: 연직배수 공법

Search Result 84, Processing Time 0.03 seconds

토목섬유 수평배수재의 투수성 평가 및 해석

  • 전한용;장용채
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.307-310
    • /
    • 1998
  • 연약지반상에 고속도로 노체를 형성하기 위해서는 다양한 지반개량공법이 적용되며 그 중 가장 보편적인 개량공법이 연직배수를 통한 압밀촉진 공법이다. 이와 같은 압밀촉진공법이 효율적으로 이루어지기 위해서는 연약층 내부에 타입하는 연직배수재의 역할도 중요하지만, 연직배수재를 통해서 상승하는 압밀수를 신속히 제체 밖으로 배출시킬 수 있는 수평배수기능도 매우 중요하다. (중략)

  • PDF

Development of Automatic PBD Construction Quality Measuring System for Soft Foundation Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Shin, Ye-Ho;Kim, Tae-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1159-1162
    • /
    • 2010
  • 연약지반 문제를 해결하기 위한 방안으로 세계 각국에서 연약지반 개량공법의 하나인 연직배수공법이 주로 사용되고 있다. 연직배수공법은 연약한 점성토 지반 내에 인공적으로 연직 배수재을 다수 설치하여 배수거리를 단축시킴으로써 압밀을 촉진시키고, 그에 따른 강도증가 효과를 얻을 수 있는 공법이다. 연직배수재로 경제성과 시공성이 우수한 PBD가 널리 사용되고 있다. PBD 시공품질은 시공 깊이, 압력, 수직도 등에 영향을 받을게 된다. 본 논문에서는 PBD 시공시 배수재의 시공 심도, 압력, 수직도를 자동측정하여 작업자가 실시간으로 모니터링 할 수 있고 시공결과를 자동 저장하는 시스템을 개발하였다. 개발된 시스템은 시공 불량 요인이 발생시 자동 경고하여 불량률을 줄일 수 있고, 장비의 이상 발생시 자동 제어시스템을 가동하여 작업의 안전성을 확보하도록 하였다.

  • PDF

Geotechnical Evaluation on the Application of Reactive Vertical Drainage Method (반응성연직배수공법의 적용에 대한 지반공학적 평가)

  • Na, Hyoung-Yun;Chae, Deokho;Oh, Myoung-Hak;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.13-17
    • /
    • 2012
  • Recently, our ocean development paradigm is changing so that the development focus has been moved from the port facility developments to creating useful marine space. This paradigm accords well with the current green technology and helps the growth of service industries and the development from this paradigm can become a national land mark. Accordingly, the concept of creating marine waste landfill by the development of resource recycling technology has been introduced for eco-friendly space as an artificial island in future. Therefore, this study introduces the reactive vertical drainage method that is to pursue the purification of pollutants as well as stabilization of newly deposited soils in marine environments. To install the reactive vertical drainage piles for more effective feasibility and constructability, placements of drainage mid-layer are considered in the geotechnical viewpoint. Consolidation characteristics were evaluated by standard consolidation tests after several types of model test. As s result, the application of mid-layer drainage is strongly recommended in the reactive vertical drainage to quickly stabilize newly deposited soils. And vacuum consolidation method has better consolidation characteristic than vertical loading method in terms of the settlements predicted by additional stress for further use as an artificial island.

Required Discharge Capacity for Horizontal Drains Installed with Vertical Drains (연직배수공법에서 수평배수층의 소요통수능)

  • 김현태;김상규;공길용
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.59-70
    • /
    • 2002
  • Horizontal drains are sometimes installed on the ground together with vertical drains in order to drain excess pore water. Taking into account the discharge capacity of horizontal drains, a new analytical method is developed in this paper, and then a new formula for the discharge capacity of horizontal drains is proposed. It is known from the analysis that the effect of the rate of surcharge loading is negligible in determining horizontal discharge capacity. This formula is described as the function of coefficient of consolidation, space of vertical drain, compression index, length of horizontal drains, and thickness of the compressible layer.

Application of PVDF to Enhance Drainage Capability in Clay Slurry (점토슬러리의 배수촉진을 위한 PVDF의 활용)

  • Kim, Young-Uk;Park, Ji-Ho;Lam, Hoang Trong;Kim, Jung-Han;Jung, Dong-Hwan;Kim, Sang-Shik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.871-873
    • /
    • 2009
  • 기존의 연직 배수공법은 통수능의 저하, 막힘현상(clogging) 등으로 인하여 연약지반의 압밀을 지연시키는 문제점을 가지고 있다. 이 연구에서는 고분자 압전소자인 PVDF(polyvinylidene fluoride)를 연직배수공법에 적용하여 연직배수공법의 기존 문제점을 극복하고 연약지반의 간극수를 빠르게 소산시킴으로서 압밀을 촉진 시킬 수 있을 것이라 판단되어 이에 따른 실내 실험을 수행하였다. 실험 결과 PVDF를 적용한 경우에서 그렇지 않은 경우보다 간극수의 배출량이 증가하여 PVDF의 적용으로 배수재의 성능이 향상됨을 알 수 있었다.

  • PDF

Characteristics of Positive Pressure Distribution in Vertical Drainage Method to Prevent Buoyance (부력방지를 위한 연직배수공법의 양압력 분포 특성 분석)

  • Jongin Hong;Namcheol Kim;Youngshin Park;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.33-39
    • /
    • 2023
  • As interest in the use of underground spaces increases, safety against water pressure acting on underground structures is required. In Korea, various buoyancy prevention methods are used to control such underground water pressure, and among them, the vertical drainage method with excellent economic efficiency, constructionability and stability has recently been introduced and applied. However, in the case of the vertical drainage method designed and constructed in the field, it is often designed and constructed depending on numerical analysis, making it difficult to expect practical stability judgment. Accordingly, in this study, an experiment was conducted to measure both pressure by installing a vertical drainage system using a model soil. Based on the measured value by the experiment and the numerical analysis value, we intend to compare and analyze the action positive pressure and use it as basic data for field application.

항만배후단지 조성공사 설계사례 - 부산항 신항 남컨배후단지 축조공사를 중심으로

  • Go, Seong-Hun;Song, Sang-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.222-224
    • /
    • 2018
  • 국내 항만배후단지 중 최대 연약층 심도, 초연약 지반이 분포하는 부산신항 남컨테이너부두 항만배후단지 조성공사에 요구되는 지층분포 특성에 따른 연약지반개량의 표층처리 및 연직배수공법 등 제반사항을 유사사례, 시공성 및 경제성 등을 종합적으로 고려하여 제공하였다. 본 설계를 통해 연약지반개량 중 대심도 연직배수를 위한 PBD 타설 장비의 개량을 유도하였으며, 유지관리 및 대심도 연약지반에 따른 경제성을 고려한 허용잔류 침하량을 토지 용도별로 분류하여 제시하였다.

  • PDF

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

Development of Automatic PBD Construction Quality Measurement System for Soft Ground Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Mun, Sang-Don;Kim, Hang-Young;Kim, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.605-610
    • /
    • 2011
  • Soft ground improvement is essential to enhance strength of ground for construction in reclaimed land or shore. There are many method of soft ground improvement, and vertical drain method was widely used in many countries including korea. As vertical drain method is to plant many Prefabricated Vertical Drains in soft ground, it promotes consolidation and enhances strength. The PBD(Plastci Board Drain) that is excellent economy and workability was widely used in many countries as Prefabricated Vertical Drains. Construction quality of PBD is affected installation depth, pressure, perpendicularity. This paper describes the system developed that can automatically measure installation depth, pressure and perpendicularity for PBD. This system can reduce fraction defective of construction by auto faulty alarm and keeps the safety of operator by auto control system.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF