• Title/Summary/Keyword: 연접부호

Search Result 54, Processing Time 0.039 seconds

Performance Analysis of LDPC code with Channel Estimation in Underwater Communication (수중통신 채널에서 채널 추정 오차에 따른 LDPC 부호 성능분석)

  • Kim, Nam-Soo;Jung, Ji-Won;Kim, Ki-Man;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2295-2303
    • /
    • 2009
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed the compensation method of multipath effect using the impulse response of the UWA channel and then analysis the performance of channel coding such as LDPC code, concatenate code. Also we analysed the time-delay errors and estimated amplitude errors of estimated channel information and its affection on the performance. As shown in simulation results, the performance of proposed compensation method is better than the performance of conventional method.

Performance Evaluation of Error Correcting Code through DVB-C2 Channel Encode/Decode Simulator (DVB-C2 채널 부복호 시뮬레이터를 통한 오류정정 부호 성능 검증)

  • Jung, Joon-Young;Choi, Dong-Joon;Hur, Namho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.272-274
    • /
    • 2011
  • 최근 들어 케이블 방송망을 기반으로 한 디지털 방송, VoIP(Voice over Internet Protocol), VOD(Video on Demand), 영상전화, 이동전화, 무선 랜 로밍 등의 다양한 멀티미디어 서비스의 출현과 향후 도입될 새로운 융합형 멀티미디어 서비스의 수용을 위해 케이블 망의 고도화에 대한 요구가 제기되었다. 특히 유럽을 중심으로 이러한 요구를 만족시키기 위해 DVB(Digital Video Broadcasting)-C2 규격의 개발이 진행되었다. DVB-C2 규격에서는 기존의 게이블 전송 규격인 DVB-C에 대해 30% 이상의 전송 효율을 높이고자 새로운 변조 방식과 채널 오류정정 부호 방식을 도입하였다. 이에 본 논문은 본 논문에서는 DVB-C2 규격에서 도입된 채널 오류정정 부호인 BCH(Bose, Chaudhuri, and Hocquenghem) 부호와 LDPC(Low Density Parity Check) 부호의 연접 방식에 대한 성능을 검증하고자 한다. 이를 위해 개발된 시뮬레이터의 소개와 이를 통한 시험결과를 제시한다.

  • PDF

Experiment performance analysis of turbo code based turbo equalizer (터보 부호 기반의 터보 등화기 실험 성능 분석)

  • Park, Gun-woong;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1525-1530
    • /
    • 2015
  • In this paper, We analyzed the performance of turbo equalizer using turbo codes thorough the under water experiment. To compensate the distorted signal induced by multipath effect, we apply the iterative turbo codes that iteratively exchange probabilistic information between LMS-DFE and turbo decoder, thereby reducing the error rates significantly. We showed the successful of turbo decoding of iterative turbo equalizer is 93%.

A Performance Analysis of FEC Coding Method in Rayleigh Satellite Return Link Channel (레일리 위성 리턴링크 채널에서 FEC 부호 방식 성능분석)

  • Lee Seong Ro;Cho Sung Eui;Oh Deock gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1633-1641
    • /
    • 2004
  • In satellite digital broadcasting and satellite internet, severe burst errors occur in the high-speed return channel from the satellite to mobiles. In this paper, we analyze the performance of the forward error correction (FEC) coding method in the Rayleigh fading return channel. We first investigate the channel model of Loo, LutB, Vucetic and Corazza. We then compare the performance of the convolutional, Reed-Solomon (RS), convolution-RS concatenation, and Turbo codes in rayleigh fading channel.

Design of new space-time block codes using 3 transmit antennas (3개 송신안테나를 사용한 새로운 시공간블록부호 설계)

  • Jung Tae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.617-623
    • /
    • 2005
  • In this paper, new space-time block codes achieving full rate and full diversity for QAM and quasi-static Rayleigh fading channels when using 3 transmit antennas are proposed. These codes are constructed by serially concatenating the constellation rotating precoders with the Alamouti scheme like the conventional A-ST-CR code Computer simulations show that all of the proposed codes achieve the coding gains greater than the existing ST-CR code, in which the best has approximately 1.5dB and 3dB larger coding gains than the ST-CR code for QPSK and 16-QAM, respectively, at average SER= 10$^{-5}$.

Generalization of Tanner′s Minimum Distance Bounds for LDPC Codes (LDPC 부호 적용을 위한 Tanner의 최소 거리 바운드의 일반화)

  • Shin Min Ho;Kim Joon Sung;Song Hong Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1363-1369
    • /
    • 2004
  • LDPC(Low Density Parity Check) codes are described by bipartite graphs with bit nodes and parity-check nodes. Tanner derived minimum distance bounds of the regular LDPC code in terms of the eigenvalues of the associated adjacency matrix. In this paper we generalize the Tanner's results. We derive minimum distance bounds applicable to both regular and blockwise-irregular LDPC codes. The first bound considers the relation between bit nodes in a minimum-weight codeword, and the second one considers the connectivity between parity nodes adjacent to a minimum-weight codeword. The derived bounds make it possible to describe the distance property of the code in terms of the eigenvalues of the associated matrix.

Performance Analysis of MFSK Signal using Reed-Solomon / Convolutional Concatenated Coding and MRC Diversity Techniques in m-distributed Fading Environment (m-분포 페이딩 환경에서 Reed-Solomon/컨벌루션 연접 부호화 기법과 MRC 다이버시티 기법을 함께 이용하는 MFSK 신호의 성능 해석)

  • 이희덕;강희조;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.2
    • /
    • pp.10-19
    • /
    • 1994
  • The error rate equation of Reed-Solomon/Convoutional concatenated coded MFSK signal transmitted over m-distributed fading channel with Additive White Gaussian Noise (AWGN) and re- ceived with Maximal Ratio Combining (MRC) diversity has been derived. The bit error probability has been evaluated using the derived equation and shown n figures as a function of signal to noise ratio, fading index and the number of diversity branches. From the results obtained, we have shown that the bit error probability of MFSK signal is improved by using coding technique in fading environment. The concatenated coding technique is found to be very effective. When concatenated coding and MRC diversity reception techniques are used together in fading environ- ment, the improvement of error performance attains about 6.6 dB in terms of SNR as compared with that of employing only concatenated coding case.

  • PDF