In this note we examined some terms, parallel lines and angles in elementary school mathematics and middle school mathematics respectively. Since some terms are represented early in elementary school mathematics and not repeated after, some students are not easy to apply the terms to their lesson. Also, since the relation between parallel lines and angles are treated intuitively in 7-th grade, applying the relation for a proof in 8-th grade would be meaningless. For the variety of mathematics education, it is desirable that the relation between parallel lines and angles are treated as postulate. Also, for out standing students, it is desirable that we use deductive reasoning to prove the relation between parallel lines and angles as a theorem. In particular, the treatments of vertical angles and the relation between parallel lines and angles in 7-th grade text books must be reconsidered. Proof is very important in mathematics, and the deductive reasoning is necessary for proof. It would be efficient if some properties such as congruence of vertical angles and the relation between parallel lines and angles are dealt in 8-th grade for proof.
The purpose of this study was to examine the impact of Argument-based Inquiry approach on elementary school students' critical thinking in elementary school science class. For this purpose, 23 students from two 5th grade elementary school classes in a metropolitan city were selected. One class (11 students) was assigned as the experimental group which Argument-based inquiry approach on 10 topics were applied. To determine the impact of Argument-based Inquiry approach on critical thinking, we analyzed the results of critical thinking tests before and after class and recordings of the discussion process of students in the experimental group. As a result of the critical thinking analysis, the average score of the experimental group in the deduction section was statistically and significantly higher than that of the comparative group. And as a result of analysis of recordings of the discussion process, students used deductive reasoning more often than inductive reasoning, and their use of this reasoning increased significantly at the claim·evidence stage.
The purpose of this study is to confirm constructivists' assumption that when a little low level learners are taken in learner-centered instruction based on a constructivism they can also construct knowledge by themselves. To achieve this purpose, the researchers compare the effects of learner-centered instruction based on the constructivism and teacher-centered instruction based on the objective epistemology where second graders learn multiplication facts through the each treatment on learners' reasoning ability and achievement. Some conclusions are drawn from results as follows. First, learner-centered instruction based on a constructivism has significant effect on learners' reasoning ability. Second, learner-centered instruction has slightly positive effect on learners' deductive reasoning ability. Third, learner-centered instruction has more an positive influence on understanding concepts and principles of not-presented mathematical knowledge than teacher-centered instruction when implementing it with a little low level learners.
In this paper it is discussed how children develop their logical reasoning beyond difficulties in the process of making sense of division with decimals in the classroom setting. When we consider the gap between mathematics at elementary and secondary levels, and given the logical nature of mathematics at the latter levels, it can be seen as important that the aspects of children's logical development in the upper grades in elementary school should be clarified. This study focuses on the teaching and learning of division with decimals in a 5th grade classroom, because it is well known to be difficult for children to understand the meaning of division with decimals. It is suggested that children begin to conceive division as the relationship between the equivalent expressions at the hypothetical-deductive level detached from the concrete one, and that children's explanation based on a reversibility of reciprocity are effective in overcoming the difficulties related to division with decimals. It enables children to conceive multiplication and division as a system of operations.
Journal of The Korean Association For Science Education
/
v.40
no.1
/
pp.77-87
/
2020
Scientific inquiry has emphasized its importance in various aspects of science learning and has been performed according to various methods and purposes. Among the various aspects of science learning, it is emphasized to develop core competencies with science, such as scientific thinking. Therefore, it is necessary to support students to be able to formulate scientific reasoning properly. This study attempts to explore problem-finding and scientific reasoning in the process of performing scientific inquiry. This study also aims to reveal what factors influence this complex process. For this purpose, this study analyzed the inquiry process and results performed by two groups of college students who conducted the inquiry related to osmosis. To analyze, research plans, presentations, and group interviews were used. As a result, it was found that participants used various scientific reasoning, such as deductive, inductive, and abductive reasoning, in the process of problem finding for their inquiry about osmosis. In the process of inquiry and reasoning complexly, anomalous data, which appear regularly, and the characteristics of experimental instruments influenced their reasoning. Various reasons were produced for the purpose of constructing the best explanation about the phenomena observed by participants themselves. Finally, based on the results of this study, several implications for the development context of programs using scientific inquiry are discussed.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.1
/
pp.123-148
/
2014
The purpose of this study is to figure out the perceptional characteristics of mathematically gifted elementary students by comparing the mathematical reasoning ability and errors between mathematically gifted elementary students and non-gifted students. This research has been targeted at 63 gifted students from 5 elementary schools and 63 non-gifted students from 4 elementary schools. The result of this research is as follows. First, mathematically gifted elementary students have higher inductive reasoning ability compared to non-gifted students. Mathematically gifted elementary students collected proper, accurate, systematic data. Second, mathematically gifted elementary students have higher inductive analogical ability compared to non-gifted students. Mathematically gifted elementary students figure out structural similarity and background better than non-gifted students. Third, mathematically gifted elementary students have higher deductive reasoning ability compared to non-gifted students. Zero error ratio was significantly low for both mathematically gifted elementary students and non-gifted students in deductive reasoning, however, mathematically gifted elementary students presented more general and appropriate data compared to non-gifted students and less reasoning step was achieved. Also, thinking process was well delivered compared to non-gifted students. Fourth, mathematically gifted elementary students committed fewer errors in comparison with non-gifted students. Both mathematically gifted elementary students and non-gifted students made the most mistakes in solving process, however, the number of the errors was less in mathematically gifted elementary students.
This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.
One of the education purpose of the section "Figures" in the eighth grade is to develop students' deductive reasoning ability, which is basic and essential for living in a democratic society. However, most or middle school students feel much more difficulty or even frustration in the study of formal arguments for geometric situations than any other mathematical fields. It is owing to the big gap between inductive reasoning in elementary school education and deductive reasoning, which is not intuitive, in middle school education. Also, it is very burden for students to describe geometric statements exactly by using various appropriate symbols. Moreover, Usage of the same symbols for angle and angle measurement or segments and segments measurement makes students more confused. Since geometric relations is mainly determined by the measurements of geometric objects, students should be able to interpret the geometric properties to the algebraic properties, and vice verse. In this paper, we first compare and contrast inductive and deductive reasoning approaches to justify geometric facts and relations in school curricula. Convincing arguments are based on experiment and experience, then are developed from inductive reasoning to deductive proofs. We introduce teaching methods to help students's understanding for deductive reasoning in the textbook by using stepwise visualization materials. It is desirable that an effective proof instruction should be able to provide teaching methods and visual materials suitable for students' intellectual level and their own intuition.
In this paper, we investigate and analysis high school students' generalization of cosine rule using analogy, and we study teaching and learning methods improving students' analogical thinking ability to improve mathematical thinking process. When students can reproduce what they have learned through inductive reasoning process or analogical thinking process and when they can justify their own mathematical knowledge through logical inference or deductive reasoning process, they can truly internalize what they learn and have an ability to use it in various situations.
본 연구는 초등학생들의 논리적 사고력을 신장시키기 위해 지식 기반 프로그램인 선언적 프로그램을 통해 교육현장에서도 적용할 수 있는 프로그래밍 교육을 제언하고자 한다. 학생들에게 논리적 사고 중에서도 협의의 논리적 사고 즉, 기호적 사고, 분석적 사고, 추론적 사고, 종합적 사고를 분석적 방법을 통해 실제 프로그래밍을 해 봄으로써 연역적 사고 또는 귀납적 사고를 보다 효과적이고 체계적인 프로그래밍을 할 수 있도록 지도함으로써 제 8차 교육과정에서의 컴퓨터 교육과정의 일부분으로서의 프로그래밍의 마인드를 제시하였다. 따라서 본 연구는 선언적 프로그램을 통해서 초등학교 학생들의 논리적 사고력 신장를 위하여 프로그래밍 교수학습의 방법적인 측면을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.