• Title/Summary/Keyword: 연료량측정시스템

Search Result 69, Processing Time 0.03 seconds

Development of Test Simulator for Developing Fuel Quantity Measurement System for Supersonic Jet Trainer Conformal Fuel Tank (초음속항공기 보조연료탱크 연료량측정시스템 개발용 모사시험장치 개발)

  • Kim, Bong-Gyun;Park, Dae-Jin;Jeon, Hyeon-Wu;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • A test simulator is needed to develop a fuel quantity measurement system that takes into account the roll and pitch motion of the aircraft. In this paper, we develop a test simulator that consists of attitude simulation equipment, fueling equipment, and data storage equipment. The attitude simulation equipment simulates the aircraft attitude. It is manufactured to operate pitch angle and roll angle movement. The fueling equipment supplies fuel to the supplementary fuel tank. The data storage equipment collects and stores the measured data. We also develop an automation software that operates the test simulator and collects data automatically. The test simulator has been automated to prevent testers from being exposed to toxic fuel. Through automation software, the collection period is reduced by one quarter compared to manual collection. The developed fuel quantity measurement system is verified through the test simulator.

Economic Comparison of Medium Capacity and Multi Boiler System Applied to Military Officer Housing (군간부 숙소에 적용한 중용량 및 멀티보일러 시스템의 경제성 비교)

  • Kim, Min-yong;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • In midst of electrical energy consumption on the rise due to the industrial development and the improved quality of living, medium capacity and multi boilers which use gas that is comparatively low cost and can be supplied reliably are simulated for energy consumption using the partial load data obtained from the experiment. Economic analysis that considers initial and operation costs is carried out based on the Annual equal payment method.

디지털 이미지 프로세싱과 신경망을 이용한 시멘트 Kiln 소성의 온라인 진단 및 최적 제어

  • ;Schmidt Dirk
    • Cement Symposium
    • /
    • no.29
    • /
    • pp.245-252
    • /
    • 2002
  • 소성 영역(Sintering zone)에서 클링커(Clinker)의 형상 형성은 시멘트 생산 공정에서 가장 중요한 생산 공정중의 하나이다. 소성공정의 진단 및 최적 제어의 핵심은 써모그래프(Thermo graph), 즉 적외선 카메라를 이용한 온도 분포의 측정이다. 여기에서 다룰 ''PIT Indicator'' 시스템은 분진이 많은 열악한 산업 현장의 연소 시스템에 적용할 수 있도록 특별히 설계한 공냉식의 2개 채널을 가진 광학 장비에 기초하고 있다. 비디오 영상과 써모그래프 이미지 그리고 다양한 연소 특성이 카메라를 통하여 얻어지고 자기 학습 기능을 가진 소프트웨어에서 기록되고 분석된다. 이때 얻은 데이터는 수학적 모델에서 온라인으로 Free Lime 함유율을 예측하는데 이용된다. 열분포의 써모그래프 표시와 공정상의 다양한 운전 특성을 분석하여 주는 ''PIT Indicator'' 소프트웨어를 통하여 다른 공정 제어 시스템과 연결이 가능하다. 이와 같은 하드웨어와 소프트웨어를 이용하여 최적화가 필요한 여러요소들의 최적화를 동시에 그리고 온라인으로 수행할 수가 있다. Free Lime 함유율의 연속적인 온라인 연산을 통해 생산 설비 및 공정에 맞는 최소한의 에너지를 Kiln 에 공급함으로써 근본적으로 1차 연료의 절감이 가능하고 NOx와 같은 유해 가스의 배출량도 제어할 수 있다. 또한 별도로 NOx에 대한 모델을 개발하여 NOx를 정확하게 예측하는 것도 가능하다.

  • PDF

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.

A Study on Combustion Characteristics in terms of the Type of Fuel Supply Device (Feeder) of a Wood Pellet Boiler (목재펠릿보일러의 연료공급 장치의 형태에 따른 연소특성에 관한 연구)

  • Choi, Yun Sung;Euh, Seung Hee;Oh, Kwang Cheol;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • This study reports the combustion characteristics, such as burner temperature and the concentration of exhausted gas ($O_2$, $CO_x$, $NO_x$) due to the different types and pitches of the fuel supply feeder of the wood pellet boiler. The 1st grade wood pellets composed of mainly larch have been used for the experiment. In case of using the spring feeder, mean temperature of burner was approximately $821.76^{\circ}C$, and the mean concentration of oxygen, carbon monoxide, carbon dioxide and nitrogen oxide were approximately 8.88%, 93.35ppm, 12.15% and 139.83 ppm, respectively. The test result with the spring feeder was shown to approach the condition of complete combustion compared to that of a screw feeder and were in good agreement with authentication judgement standard. Furthermore, the combustion efficiency was improved according to the growth of screw pitch. The control of air flow rate from the blower and ventilator is needed to achieve the complete combustion.

Design of Spark Advanced Controller for Improvement in Power and Torque of CNG Bi-Fuel Vehicle (압축천연가스 겸용 차량의 출력 및 토크 향상을 위한 점화 진각 제어기 설계)

  • Park, Jin-Hyun;Kim, Sung-Hoon;Cho, Seung-Wan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1641-1646
    • /
    • 2010
  • Recently, environmental concerns increased, CNG fuel research for the prevention against air pollution is actively. But, the problems of CNG fuel have less output and a shorter charging distance than gasoline. Especially, the causes of the torque and output reduction are the mixed fuel has a combustion timing loss in case of CNG fuel which has a smaller heating value per a unit volume and a slower flame propagation speed than gasoline. In this paper, we design the spark advanced controller in consideration of the spark timing loss. Through the experimental of chassis dynamometer, we show that maximum power and torque have improved compared to that of general CNG bi-fuel system.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames (등유-산소 층류 확산화염의 길이 변화 특성에 관한 실험적 연구)

  • Lee, Soo-Han;Lee, Jong won;Park, Seul Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.22-27
    • /
    • 2018
  • The flame length in coaxial diffusion flame configurations was investigated when the kerosene fuel flow rate, temperature of the oxidizer stream, and inert gas concentrations in the oxidizer stream were varied. The diffusion flame was photographed using a Schlieren camera under each of the experimental conditions and the obtained images were then digitized to measure the flame length. The measured flame lengths were proportional to the kerosene fuel flow rate and increased with increasing temperature of the oxidizer stream. In addition, increases in the inert gas concentration in the oxidizer stream resulted in stretching of the flame. In particular, the flame was further elongated in the oxidizer steam diluted with helium gas. Inert substitutions in the oxidizer stream that can adjust the viscous drag are believed to be one of the important mechanisms that affect the length of the coaxial diffusion flames.

Micro Gas Turbine Performance using Catalytic Cracked Ethanol as Fuel (촉매 분해 에탄올을 연료로 사용하는 마이크로 가스터빈의 성능)

  • Choi, Songyi;Koo, Jaye;Yoon, Youngbin
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • In order to verify the possiblity of improving the combustion performance of ethanol using zeolite catalyst and the characteristics of nitrogen oxides and carbon monoxide emission, micro gas turbine experiments were performed using catalytic reaction products, ethanol and kerosene as fuels and the results were compared. The thrust of the catalytic reaction product was lower than that of kerosene, but it was improved by 5% on average compared with the use of ethanol. Nitrogen oxides and carbon monoxide emissions of the catalytic reaction products were measured to be very low overall compared to kerosene. As a result, when the ethanol was reformed using the zeolite catalyst, the engine performance could be improved while maintaining the environment friendliness of the ethanol.

A Study on Measurement and Elimination Methods of Dissolved Nitrogen in Kerosene (케로신 내 용존질소 측정 및 제거 방법 연구)

  • Lee, Wongu;Kim, Seong Lyong;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.142-148
    • /
    • 2018
  • To improve the performance of a launch vehicle, kerosene, a launch vehicle fuel, undergoes a densification process. Liquid nitrogen injection cooling is an effective densification method which has a simple system and is inexpensive. During the cooling process, however, nitrogen may dissolve in the kerosene, possibly resulting in changes to fuel properties. Therefore, it is essential to measure and eliminate the amount of dissolved nitrogen in the kerosene. In this study, the vacuum extraction principle is introduced to measure the content of dissolved nitrogen in the kerosene. In addition, the experimental results, which used a designed/manufactured nitrogen sampling device, are described. From the results, the validity of the nitrogen sampling device and the dissolved nitrogen measurement/elimination methods was demonstrated.