DOI QR코드

DOI QR Code

A Study on Measurement and Elimination Methods of Dissolved Nitrogen in Kerosene

케로신 내 용존질소 측정 및 제거 방법 연구

  • Lee, Wongu (School of Mechanical Engineering, Chungbuk National University) ;
  • Kim, Seong Lyong (Propulsion Test and Evaluation Team, Korea Aerospace Research Institute) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University)
  • Received : 2018.02.01
  • Accepted : 2018.04.16
  • Published : 2018.12.01

Abstract

To improve the performance of a launch vehicle, kerosene, a launch vehicle fuel, undergoes a densification process. Liquid nitrogen injection cooling is an effective densification method which has a simple system and is inexpensive. During the cooling process, however, nitrogen may dissolve in the kerosene, possibly resulting in changes to fuel properties. Therefore, it is essential to measure and eliminate the amount of dissolved nitrogen in the kerosene. In this study, the vacuum extraction principle is introduced to measure the content of dissolved nitrogen in the kerosene. In addition, the experimental results, which used a designed/manufactured nitrogen sampling device, are described. From the results, the validity of the nitrogen sampling device and the dissolved nitrogen measurement/elimination methods was demonstrated.

발사체 연료 케로신은 발사체의 성능 향상을 위해 고밀도화 과정을 거치게 된다. 고밀도화 방법 중 액체질소 주입 냉각법은 시스템이 간단하고 비용이 저렴한 효과적인 방법이다. 하지만 냉각과정 중 질소가 케로신에 용해되어 물성을 변화시키는 원인이 되기도 한다. 따라서 냉각 후 케로신 내 용존질소의 양을 측정하고 제거하는 작업이 필수적이다. 본 연구에서는 케로신 내 용존질소 함유량을 측정할 수 있는 진공추출 원리를 소개하였다. 또한 질소 샘플링 장치를 설계/제작하여 수행한 실험 결과를 설명하였다. 실험결과로부터 질소 샘플링 장치와 용존질소 측정법/제거법의 유효성을 입증하였다.

Keywords

References

  1. Fazah, M.M., "STS Propellant Densification Feasibility Study Data Book," NASA TM 108467, 1994.
  2. Jung, Y.S., Seo, M.S. and Kim, Y.C., "Helium Injection Modeling for Cryogenic Propellant Densification," The 2015 World Congress on ANBRE15, Incheon, Korea, Aug. 2015.
  3. Friedlander, A., Zubrin, R. and Hardy, T.L., "Benefits of Slush Hydrogen for Space Missions," NASA TM 104503, 1991.
  4. Partridge, J.K., Tuttle, J.W., Notardonato, W.U. and Johnson, W.L., "Mathematical Model and Experimental Results for Cryogenic Densification and Sub-cooling Using a submerged Cooling Source," Cryogenics, Vol. 52, No. 4-6, pp. 202-267, 2012.
  5. Ramesh, T. and Thyagarajan, K., "Investigation Studies on Sub-cooling of Cryogenic Liquids Using Helium Injection Method," American Journal of Applied Sciences, Vol. 11, No. 5, pp. 707-716, 2014. https://doi.org/10.3844/ajassp.2014.707.716
  6. Lak, T., Lozano, M. and Neary, D., "Propellant Densification Without Use of Rotating Machinery," 38th Joint Propulsion Conference and Exhibit, Indianapolis, I.N., U.S.A., AIAA 2002-3599, Jul. 2002.
  7. Cho, N., Han, S., Kim, Y. and Jeong, S., "Review of Cryogenic Propellant Densification Technology," Journal of the Korean Society of Propulsion Engineers, Vol. 9, No. 3, pp. 133-144, 2005.
  8. Tomsik, T.M. and Meyer, M.L., "Liquid Oxygen Propellant Densification Production and Performance Test Results With a Large-Scale Flight-Weight Propellant Tank for the X33 RLV," NASA TM 2010-216247, 2010.
  9. Yeo, I., Kang, S., An, J., Lee, J. and Seo, J., "Critical Design of Kerosene Filling System for KSLV-II Launch Complex," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 3, pp. 76-83, 2017. https://doi.org/10.6108/KSPE.2017.21.3.076
  10. Edwards, T., "Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003," Journal of Propulsion and Power, Vol. 19, No. 6, pp. 1089-1107, 2003. https://doi.org/10.2514/2.6946
  11. Lemmon, E.W., Huber, M.L. and McLinden, M.O., "NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP V9.1," NIST, Gaithersburg, M.D., U.S.A., Apr. 2013.