• Title/Summary/Keyword: 연기발생기 실험

Search Result 36, Processing Time 0.029 seconds

A Study on the Application Scheme of Fire Identification Considering the Heat Release Rate Characteristics of Inflammable Material (가연물의 발열량 특성을 고려한 화재감식 적용방안에 관한 연구)

  • Kang, Jung-Ki;Oh, Jin-Hee;You, Woo-Jun;Ryou, Hong-Sun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.52-57
    • /
    • 2014
  • The present study suggests the fundamental method for the prediction time of the fire origin by analyzing the combustion phenomenon of inflammable material in the building structure. The heat release rate (HRR) with time variant is evaluated for the interphone as a inflammable material, which is opted from the fire incidents in the stairwell. the fire dynamics simulator (FDS ver. 6.1) is applied in order to analyze the difference of the smoke inflow time to the downstair from the fire event area with various fire pattern. The results show that the maximum inflow time difference for the case of the interphone made from ABS materials is about 4.93 times with the input conditions of heat flux values and the environment in the FDS for the fixed stairwell which composed of total volume $291.3m^3$, floorage $23.3m^2$ and the height of each floor 2.5 m. This research can be practical information for the application method of simulation scheme with experimental data to the fire Identification.

Development and Evaluation of Portable Multiple Gas Meter (휴대용 다중 가스측정 장비 개발 및 평가)

  • Jang, Hee-Joong;Kim, Eung-Sik;Park, Jong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.483-490
    • /
    • 2019
  • Assessing the effect of forest fires and measuring the gas concentration around a fire has received little attention. Therefore, the concentrations of various gases in areas surrounding a fire need to be measured by the development of a suitable device. Unlike conventional portable devices, the AQS (Air Quality System) proposed in this paper is a portable instrument that measures five types of gases simultaneously, including CO, CO2, NOx, VOCs, and NH3, and has high durability through sensor protection algorithms. A PC-based program with an AQS connection was developed to monitor the real-time changes in the gas concentration. The reliability of the developed device was proven through a comparison of the results with other commercial gas analyzers. Measurements of the concentration due to indoor and outdoor fires were performed around a fire area to review the applicability and the predicted results were obtained.

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Study on the Performance Characteristics of Organic-Inorganic Hybrid Flame Retardants (유-무기 하이브리드 방염제의 성능특성에 관한 연구)

  • Cho, Kyeong-Rae;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.12-19
    • /
    • 2017
  • The present paper is a study on the performance characteristics of organic-inorganic hybrid flame retardants. MDF plywood has been used, that are being used for the interior decoration of building structures, to make the samples for experiment according to the existing or non-existing treatment of organic-inorganic hybrid flame resistants. Later, the experiment on the measurement of flame retardant performance using a $45^{\circ}$ flammability tester and the experiment on the measurement of combustion characteristic using a cone calorimeter have been proceeded to confirm the performance characteristic of organic-inorganic hybrid flame retardants. From the result of experiments, it has been confirmed that both organic-inorganic hybrid flame retardants have merits of inorganic and organic substances, and that heat resistance, durability and adhesiveness have been largely improved. The performance on the flame retardant has also appeared with excellent effect such as the reduced generation of combustion gas and the decreased generation of smoke.

Experiments on the Influence of Opening of Natural Smoke Ventilators on the Stack Effect in High-rise Mixed-use Residential Buildings (초고층주상복합건물에서 배연창 개방이 연돌효과에 미치는 영향에 대한 실험적 연구)

  • Lim, Chae-Hyun;Kim, Bum-Gyu;Park, Yong-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.89-94
    • /
    • 2009
  • The stack effect in high-rise buildings is expected more significant at nights in winter due to the large temperature difference between the inside and outside of the buildings. However, the existence of large openings such as natural ventilators on the floor may effect the position of neutral plane, smoke spread at fire and thus obstruct the door openings for rescue. In this paper, the vertical and horizontal pressure distribution with different openings of natural smoke ventilators was experimentally analyzed by investigating pressure differentials.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Test Method Using Shield-cup for Evaluating Response Characteristics of Fire Detectors (화재감지기의 응답특성 평가를 위한 Shield-cup이 적용된 시험방법)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.36-44
    • /
    • 2020
  • It is necessary to predict the activation time of fire detectors accurately to improve the reliability for evaluating the required safe egress time (RSET) in performance-based fire safety design. In this study, problems of the plunge test, which is widely applied in assessing fire detectors, were examined through experiments and numerical simulations. In addition, a new shield-cup test method was proposed to address these problems. A fire detector evaluator (FDE) developed in a previous study was applied to ensure measurement accuracy and reproducibility. During the plunge tests, a significant measurement error was observed in the activation time of the smoke detector because of the rapid flow change when the detector was input. However, during the shield-cup tests, slight changes occurred in the flow inside the FDE when the detector as exposed to smoke. In conclusion, the proposed shield-cup test method is expected to be useful for evaluating the response characteristics of fire detectors more accurately in simulated fire environments.

Iot based Indoor Air Quality Monitoring System (Iot 기반 실내 공기오염 측정 시스템)

  • Kim, Ungtae;Kim, Yong-Chul;Kwak, Sooyeong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • Many people interested in indoor air quality monitoring since they spend a majority of their time indoors such as homes and offices. This paper proposes the effective indoor air quality monitoring system and it can gauge carbon dioxide, particulate matter and VOCs(Volatile Organic Compounds) which can be harmful to humans. The proposed system is composed of three main modules which are device, web server, and mobile application. In order to evaluate the performance, we tested two cases which are candle and smoke. We monitor the condition of indoor air quality with our mobile application. Also, we developed the information graphics to compare the condition of air quality between indoor and outdoor and this mobile application improves usability.

Development and Performance Test of Gas Safety Management System based on the Ubiquitous Home (u-home 가스안전관리시스템 개발 및 성능시험)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Kim, Young-Gyu;Kim, Yeong-Dae;Jee, Cha-Wan;Kwon, Jong-Won;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.13-20
    • /
    • 2011
  • In this paper, we proposed a system to raise gas safety management by using the wireless communication module and intelligent gas safety appliances. Our designed systems configure a micom-gas meter, an automatic extinguisher, sensors, and a wallpad. A micom-gas-meter monitors gas flow, gas pressure, and earthquake. An automatic fire extinguisher checks gas(combustible) leaks and temperature of $100^{\circ}C$ and $130^{\circ}C$. Sensors measure smoke and CO gas. In our novel system, a micom-gas meter cut off inner valve with warnings, an automatic fire extinguisher cut off middle valve and spray extinguishing materials, and sensors generate signals for smoke and CO when occurring gas risk. Gas safety appliances and sensors takes safety measures, and transmit those signal to a wallpad. The wallpad again transmit signal like events to a control server. Users can connect web pages for gas safety through B-ISDN and control and manage them. We hereby devised scenarios for gas safety and risk management, and demonstrated their effectiveness through experiments.