항공사진 촬영량이 증가함에 따라 품질검사 자동화의 필요성이 대두되고 있다. 본 연구에서는 딥러닝 기법으로 항공사진 내 구름을 분류 또는 탐지하는 실험을 수행하였고, 또한 위성영상을 학습자료에 포함시켜 분류 및 탐지를 수행하였다. 실험에 사용한 알고리즘으로는 GoogLeNet, VGG16, Faster R-CNN과 YOLOv3을 적용하여 결과를 비교하였다. 또한 구름이 포함된 오류영상 확보의 현실적 제한을 고려하여 항공영상만 존재하는 학습 데이터세트에서 위성영상을 활용한 추가학습이 분류 및 탐지정확도에 영향을 미치는지도 분석하였다. 실험결과, 항공사진의 구름 분류와 탐지에서 각각 GoogLeNet과 YOLOv3 알고리즘이 상대적으로 우월한 정확도를 나타냈고, GoogLeNet은 구름에 대한 생산자정확도 83.8% 그리고 YOLOv3는 구름에 대한 생산자정확도 84.0%를 보여주었다. 또한, 위성영상 학습자료 추가가 항공사진 자료의 부족 시 대안으로 적용가능 함을 보여주었다.
비소세포폐암(NSCLC)은 전체 폐암 중 85%의 높은 비중을 차지하며 사망률(22.7%)이 다른 암에 비해 현저히 높은 암으로 비소세포폐암 환자의 수술 후 예후에 대한 예측은 매우 중요하다. 본 연구에서는 종양을 관심영역으로 갖는 비소세포폐암 환자의 수술 전 흉부 CT 영상 패치의 종류를 종양 관련 정보에 따라 총 다섯 가지로 다양화하고, 이를 입력데이터로 갖는 사전 학습 된 ResNet 과 EfficientNet CNN 네트워크를 사용하여 단일 모델과 간접 투표 방식을 이용한 앙상블 모델, 그리고 3 개의 입력 채널을 활용한 앙상블 모델에서의 실험 결과 및 성능을 오분류의 사례와 Grad-CAM 시각화를 통해 비교 분석한다. 실험 결과, 종양 주변부 패치를 학습한 ResNet152 단일 모델과 EfficientNet-b7 단일 모델은 각각 87.93%와 81.03%의 정확도를 보였다. 또한 ResNet152 에서 총 3 개의 입력 채널에 각각 영상 패치, 종양 주변부 패치, 형상 집중 종양 내부 패치를 넣어 앙상블 모델을 구성한 경우에는 정확도 87.93%를, EfficientNet-b7 에서 간접 투표 방식으로 영상 패치와 종양 주변부 패치 학습 모델을 앙상블 한 경우에는 정확도 84.48%를 도출하며 안정적인 성능을 보였다.
교육용으로 사용되는 피삭재(소재)는 SM20C, Al6061, 아크릴 등의 소재를 사용한다. SM20C 소재는 탄소강으로서 자격증 시험 및 기능경기대회에서 많이 사용되지만 산업현장에서도 많이 사용된다. Al6061 소재는 탄소강에 비하여 경도가 낮아지고 전성(연성)이 강한 소재이기에 공구의 구성인선이 많이 발생하는 소재라고 한다. 아크릴 소재를 이용하여 학생들에게 실습지도 하면 어느 부분에서 과다 절삭으로 인하여 진동이 발생하고 공구의 파손이 발생하는 소재이다. 이러한 과정에서 5축장비인 2NC헤드에게 가해지는 충격이 정밀도 제어에는 어느정도 영향을 줄 수 있는지 알아본다. 5축장비의 가장 취약한 부분은 AC축을 제어하는 헤드가 가장 약한 부분이라 할 수 있다. 이 부분의 정밀도 및 누적 공차가 발생할 경우 모든 제품의 정밀도가 떨어지는 현상이 발생한다. 따라서 2NC헤드의 핵심적인 부분, 스핀들 하우징은 Al7075 T6(미국 알코아사) 소재를 사용하여 진행하였다. 이 소재에서 작용되는 진동 및 절삭 과정에서 힘을 극한조건에서 유한요소 해석으로 적용되는 값을 밝혀 내고자 해석을 진행하였다. 이러한 해석 데이터를 활용하여 학생들이 5축절삭 보다 5축가공기의 구조를 보고 이해하는데 도움이 되기를 기대한다.
하천합류부에서 수체혼합양상을 파악하기 위해서는 고해상도의 자료가 필요하다. 특히 하천분석에 있어 수리·수질 특성은 수생태 건강성에 대한 기초자료로 사용되기 때문에 지속적 모니터링을 통해 관측이 필요한시점이다. 또한 현제 기존의 모니터링 체계에서도 1차원적인 고정적인 측정방법을 통해 측정이 진행되기 떄문에 측정지점 주변의 제외한 하천 전체의 수리·수질 특성조사가 이루어지지 않고 있다. 그에 따른 고해상도의 측정자료를 얻기 위해서는 측정자가 부담을 많이 가지며, 측정할 수 있는 영역이나 시간적으로 제한적이다. 해상도는 낮추되 광범위한 데이터를 취득하기 위해서는 적절한 보간법이 선정되어야 한다. 따라서 본 연구에서는 하천합류부에서의 고해상도 측정방법을 소개하고 계측결과에 따른 보간법 비교하였다. 이를 이용한 저해상도 측정결과에서의 예측과 보간법에 대한 시각화를 통해 하천의 전체적인 수리·수질정보를 표기하였다. 각각의 보간법을 비교함으로써 하천 매핑에 있어 IDW, Natural Neighbor, Kriging 기법을 적용하여 시각화된 자료와 정량적 평가를 통해 하천매핑의 정밀성을 향상시켰다. 본연구를 통해 공간보간을 통한 하천의 측정의 새로운 방안제시가 될것이라 사료된다.
최근 딥 러닝 기술의 발전으로 방대한 텍스트 데이터를 사전에 학습한 우수한 성능의 거대한 모델들이 다양하게 고안되었다. 하지만 이러한 모델을 실제 서비스나 제품에 적용하기 위해서는 빠른 추론 속도와 적은 연산량이 요구되고 있으며, 이에 모델 경량화 기술에 대한 관심이 높아지고 있다. 대표적인 모델 경량화 기술인 지식증류는 교사 모델이 이미 학습한 지식을 상대적으로 작은 크기의 학생 모델에 전이시키는 방법으로 다방면에 활용 가능하여 주목받고 있지만, 당장 주어진 문제의 해결에 필요한 지식만을 배우고 동일한 관점에서만 반복적인 학습이 이루어지기 때문에 기존에 접해본 문제와 유사성이 낮은 문제에 대해서는 해결이 어렵다는 한계를 갖는다. 이에 본 연구에서는 궁극적으로 해결하고자 하는 과업에 필요한 지식이 아닌, 보다 상위 개념의 지식을 학습한 교사 모델을 통해 지식을 증류하는 이질적 지식증류 방법을 제안한다. 또한, 사이킷런 라이브러리에 내장된 20 Newsgroups의 약 18,000개 문서에 대한 분류 실험을 통해, 제안 방법론에 따른 이질적 지식증류가 기존의 일반적인 지식증류에 비해 학습 효율성과 정확도의 모든 측면에서 우수한 성능을 보임을 확인하였다.
현행 5G 특화망 이용절차는 신청, 심사, 이용, 이용 점검의 단계를 거치며 주파수 할당 전 절차로 신청, 심사단계, 주파수 할당 후 절차로 이용, 이용점검 단계로 구분할 수 있다. 5G 특화망 신청을 위해서는 여러 종류의 서류 제출이 필요하며, 서류 심사 과정과 5G 특화망 주파수 이용을 위한 무선국 검사로 인해 5G 특화망 신청 사업자가 실질적으로 특화망을 사용하기까지의 절차가 복잡하고, 상당한 시간이 소요된다. 본 논문에서는 현행 프로세스보다 신속하고, 간소화된 5G 특화망 주파수 할당을 위해 블록체인 플랫폼을 사용한 5G 특화망 주파수 할당 프로세스를 제안하였다. 블록체인 플랫폼과 NFT(Non-Fungible Token) 활용을 통해 주파수 할당 과정에서 필요한 데이터의 신뢰성과 무결성을 확보하였고, 주파수 이용 정보의 보안 유지와 신뢰 가능한 5G 특화망 주파수 할당 프로세스를 구축하였다. 또한 사람의 개입을 최소화하는 RPA 시스템을 적용하여 5G 특화망 할당 과정에서의 공정성을 확보하였다. 마지막으로 모의실험을 통하여 이더리움 블록체인 기반의 5G 특화망 주파수 할당 프로세스를 수행하였다.
황해쑥을 MeOH : H2O =70:30 용매로 추출하고, 얻어진 추출물을 EtOAc n-BuOH 및 water로 용매 분획 하였다. 이 중 n-BuOH 분획으로부터 silica gel (SiO2)과 octadecyl silica gel (ODS) column chromatography로 정제하여 4종의 화합물을 분리하였다. Nuclear magnetic resonance 및 mass spectrometry 등의 스펙트럼 데이터를 통해 화합물의 화학구조를 (2S)-naringenin (1), 3-methylkaempferol (2), 3,3'-dimethylquercetin (3), and 3,3',4'-trimethylquercetin (4) 로 구조 동정하였다. 분리한 화합물 4종은 황해쑥에서는 처음 분리동정 되었다. 본 연구를 통해 glutathione mean의 증가와 glutathione heterogeneity 감소를 보인 황해쑥 유래 화합물 1-4가 세포내 글루타티온 (GSH) 수준을 균일하게 상승시키는 효능이 있음을 확인함으로써 항산화능을 확인하였다. 이러한 결과를 바탕으로 황해쑥의 기능성 소재로 활용가능성을 확인하였다.
영산강은 황룡강과 지석천이 합류하는 지점이기 때문에 많은 비가 내리면 홍수에 취약한 반면, 인근 지역인 나주시 노안면과 광주광역시 승촌동 지역의 지하수를 풍부하게 해주는 역할을 하고 있다. 특히, 승촌보 인근 지역은 겨울철 수온이 따뜻한 지하수를 활용하여 겨울철 미나리를 대규모로 재배하고 있다. 현재 승촌보 운영 수위를 관리 수위인 E.L.7.5m보다 1.5~2m 낮은 E.L.5.5~6.0m로 운영함에 따라 지하수 수위가 보 관리 수위보다 낮게 형성되고 있다. 이에 K-water 영산강보관리단은 여름철 홍수방어를 위해 설치된 배수문을 겨울철에 닫아 인공소류지를 형성함으로써 겨울철 미나리 재배지역에 지하수가 함양되는지 시험운영을 계획하였다. 배수문 시설을 관리하는 한국농어촌공사 광주지사와 광주광역시 남구청과 협의하였다. 이후 영산강유역환경청 민관협의체 위원장과 주민대표 통장님들께 방문 설명 등 지역주민들의 공감대 형성을 거쳐, '22년 9월 30일 승촌보 인근 승촌배수문 등 5개 배수문을 폐쇄하여 11월 30일까지 소류지에 물을 담수하였다. 또한, 소류지의 수위를 파악하기 위해 GPS 측량으로 해발 표고 산정한 간이 목자판 수위계를 설치하여 소류지내 수위를 모니터링하였다. 승촌배수문(#1)에서 발생한 누수는 스펀지를 바닥에 깔아 보강함으로써 누수를 줄여 소류지 수위를 E.L.6.7m 이상을 유지하였다. 그 결과 영산강에 인접한 SCM-008 지하수 관측소 데이터는 승촌보 운영 수위에 영향을 받고 있음을 확인할 수 있었다. 미나리 재배 기간인 3월에는 수막 재배로 인한 지하수 사용으로 수위가 가장 낮았으며, 여름철에 지하수 수위가 회복되는 패턴을 반복하였다. 10월~11월 시험운영기간 동안 SCM-005, -008, -101 지하수 관측정은 소류지와 중앙배수로에 가까울수록 인공 함양시 수위 상승효과가 크게 나타났으며, 평년(2020년~2021년) 대비 지하수위 상승을 확인하였다. SC-0 지역은 2022년 가뭄으로 다우년 대비 지하수 수위가 낮았으나, 시험운영 기간 중 지하수 수위 하강 속도가 늦춰지거나, 수위가 상승하는 것을 확인하였다. 또한, 인근 마을주민들에게 시험 운영 결과를 공유하였고, 소류지가 예년처럼 건천화되었을 때보다 지하수 수위상승과 중앙배수로나 소류지에서 양수하는 등 용수 이용에 도움이 되었다는 긍정적인 답변을 받았다. 따라서 2023년도에도 겨울철 미나리 재배 시기 동안 배수문을 닫아 소류지를 형성하여 지하수 함양에 도움이 되록하여, 미나리 지역의 농가 수익 증대에 보탬이 되도록 할 예정이다.
본 논문은 선박이 조우하는 상황에서 충돌의 위험에 대한 판단을 지원하여 충돌사고를 예방하기 위하여 선박충돌위험성을 평가하는 방법을 제안하고자 한다. 선박의 항해는 불확실성이 다수 내포되어 있기 때문에 충돌의 위험을 평가할 때 선박충돌위험성이 가진 불확실성을 고려할 필요가 있다. 본 논문은 불확실성을 처리하고 각 상대 선박의 충돌의 위험을 실시간으로 평가하기 위하여 Dempster-Shafer 이론을 적용한다. 선박충돌위험의 평가 요인으로 DCPA(distance at closest point approach), TCPA(time to closest point approach), 상대 선박과의 거리, 상대방위, 속도비율 등이 사용되며, 각 평가 요인별 멤버쉽 함수로 계산된 기본확률배정함수(basic probability assignment)는 Dempster-Shafer 이론의 융합 규칙을 통하여 융합된다. 선박들이 실제로 조우하는 상황에서 수집된 선박자동식별장치 데이터를 사용하여 제안된 방법을 실험한 결과 평가의 적합성이 검증되었다. 선박간 조우 상황에서의 실시간으로 충돌위험성을 평가함으로써 인적오류로 인한 충돌사고를 예방할 수 있으며, 해상교통관제시스템과 자율운항선박의 충돌회피시스템에도 활용될 것으로 기대된다.
현재 서울특별시는 25개 구청에 7만5천여대의 CCTV가 설치되어 있다. 서울특별시 구청별로, CCTV관제를 위한 관제센터를 구축하고 24시간 인공지능 지능형 영상분석을 통해 차량 종류, 번호판인식, 색상 분류 등의 정보를 빅데이터로 구축하고 있다. 서울특별시는 국토교통부, 경찰청, 소방청, 법무부, 군부대 등과 MOU를 체결하여 긴급/응급 상황에 신속한 대응이 가능하도록 하고 있다. 즉, 각 구청의 CCTV영상을 제공하여 안전하고 재난의 예방이 가능한 스마트시티를 구축하고 있다. 본 논문에서는 CCTV영상을 인공지능을 통해 사건발생 시 차량 및 인원에 대한 특징을 추출하고 이를 기반으로 도주경로를 예측하고 지속적인 추적이 가능하도록 설계한다. 해당 경로의 CCTV영상을 인공지능이 자동으로 선택하여 표출하도록 설계한다. 해당 관할 권역 이외 지역으로 사건 관련 사람이나 차량의 도주경로가 예상될 때 인접 구청에 영상정보와 추출된 정보를 제공함으로써 스마트시티 통합플랫폼을 확장할 수 있도록 설계한다. 본 논문은 스마트시티 통합플랫폼 연구발전에 기초자료로 기여할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.