• 제목/요약/키워드: 연관단어

검색결과 253건 처리시간 0.027초

TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석 (Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs)

  • 최준연;백혜득;최진호
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.163-176
    • /
    • 2014
  • 소셜미디어 확산으로 많은 사용자들이 SNS를 통해 자신의 생각과 의견을 표출하며 다른 사용자들과 상호작용하고 있다. 특히 트위터와 같은 마이크로블로그는 짧은 문장을 통해 영화, TV, 사회 현상 등과 같은 공통의 주제에 대해 많은 사람이 즉각적으로 의견을 표출하고 교환하는 플랫폼의 역할을 수행하고 있다. TV방송 프로그램에 대해서도 의견과 감정을 마이크로블로그를 통해 표출하고 있는데, 본 연구에서는 마이크로블로그의 내용과 시청률과의 관계를 살펴보기 위해, 지난 공중파 방송 프로그램에 대한 트윗을 수집하고 부적절한 트윗들을 제거한 후 형태소 분석을 수행하였다. 추출된 형태소뿐 아니라 이모티콘, 신조어 등 사용자가 입력한 모든 단어들을 후보 자질로 삼아 시청률과의 상관관계를 분석하였다. 실험을 위해 2013년 1월부터 10개월간의 예능프로그램 트윗의 데이터를 수집하여 전국 시청률 데이터와 비교 분석을 수행하였다. 트윗의 발생량은 일주일 중 방송된 요일에 가장 많았으며, 특히 방송시간 부근에서 급격히 증가하는 모습을 보였다. 이것은 전국에 동시간에 방송되는 공중파 프로그램의 특성상 공통된 관심 주제를 제공하기 때문에 나타나는 현상으로 여겨진다. 횟수 기반 자질로 방송 일의 총 트윗 수와 리트윗 수, 방송시간 중의 트윗 수와 리트윗 수와 시청률과의 상관 관계를 분석하였으나 모두 낮은 상관 계수를 나타냈다. 이것은 단순한 트윗 발생 빈도는 방송 프로그램의 만족도 또는 시청률을 제대로 반영하고 있지 못함을 의미한다. 내용 기반 자질로 추출한 단어들 중에는 높은 상관관계를 보여주는 단어들이 발견되었으며, 표준어가 아닌 이모티콘과 신조어 중에도 높은 상관관계를 보여주는 자질이 나타났다. 또한 방송시작 전과 후에 따라 상관계수가 높은 단어가 상이함을 발견하였다. 매주 같은 시간에 방송되는 TV 프로그램의 특성상, 방송을 기다리고 기대하는 내용의 트윗과 방송 후 소감을 표현하는 트윗의 내용에 차이가 존재하였다. 이러한 분석결과는 단어에 따라 시청률과 연관성이 높은 시간대가 달라짐을 의미하며, 시청률을 측정하고자 할 때 각 단어들의 시간대를 고려해서 사용해야 함을 의미한다. 본 연구에서 제안한 방법은 기존의 표본 추출을 통해 이루어지는 TV 시청률 측정을 보완할 수 있는 방법에 활용할 수 있으리라 기대된다.

텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰 (An Investigation on the Periodical Transition of News related to North Korea using Text Mining)

  • 박철수
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.63-88
    • /
    • 2019
  • 북한의 변화와 동향 파악에 대한 연구는 북한관련 정책에 대한 방향을 결정하고 북한의 행위를 예측하여 사전에 대응 할 수 있다는 측면에서 매우 중요하다. 현재까지 북한 동향에 대한 연구는 전문가를 중심으로 과거 사례를 서술적으로 분석하여, 향후에 북한의 동향을 분석하고 대응하여 왔다. 이런 전문가 서술 중심의 북한 변화 및 동향 연구에서 비정형데이터를 이용한 텍스트마이닝 분석이 더해지면 보다 과학적인 북한 동향 분석이 가능할 것이다. 특히 북한의 동향 파악과 북한의 대남 관련 행위와 연관된 연구는 통일 및 국방 분야에서 매우 유용하며 필요한 분야이다. 본 연구에서는 북한의 신문 기사 내용을 활용한 텍스트마이닝 방법으로 북한과 관련한 핵심 단어를 구축하였다. 그리고 본 연구는 김정은 집권 이후 최근의 남북관계의 극적인 관계와 변화들을 기반으로 세 개의 기간을 나누고 이 기간 내에 국내 언론에 나타난 북한과 관련성이 높은 단어들을 시계열적으로 분석한 연구이다. 북한과 관련한 주요 단어들을 세 개의 기간별로 분류하고 당시에 북한의 태도와 동향에 따라 해당 단어와 주제들의 관련성이 어떻게 변화하였는지를 파악하였다. 본 연구는 텍스트마이닝을 이용한 연구가 남북관계 및 북한의 동향을 이해하고 분석하는 방법론으로서 얼마나 유용한 것이지를 파악하는 것이었다. 앞으로 북한의 동향 분석에 대한 연구는 물론 대북관계 및 정책에 대한 방향을 결정하고, 북한의 행위를 사전에 예측하여 대응 할 수 있는 북한 리스크 측정 모델 구축을 위한 연구로 진행 될 것이다.

디지털 텍스트의 음절을 이용한 운율 정보 시각화에 관한 연구 (A Study on Rhythm Information Visualization Using Syllable of Digital Text)

  • 박선희;이재중;박진완
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.120-126
    • /
    • 2009
  • 정보화 시대가 빠르게 성장하면서 디지털 텍스트의 양도 증가하고 있다. 이에 따라 수많은 디지털 텍스트를 파악하기 위한 시각화 사례가 증가하고 있다. 기존의 디지털 텍스트 시각화 디자인은 스태밍 알고리즘(stemming algorithm)의 도입과 단어 빈도수를 추출하여 주제어를 형상화하여 텍스트의 의미를 부각시키고 문장과 문장을 연결해주는 것에 치중하고 있다. 이에 디지털 텍스트의 정서적인 느낌을 시각화할 수 있는 운율을 표현하는 것에 있어서 미흡했던 부분이 사실이다. 운율을 보다 효과적으로 표현할 수 있는 음운단위로는 음절을 들 수 있다. 문장에서 음절은 단어나 구, 문장의 발음에 가장 기본적인 발음 단위가 된다. 이를 기본으로 강세, 성조, 운율 요소들의 길이 등이 음절에 기반을 두고 있다. 음절을 정의하는 것과 가장 밀접한 연관이 있는 공명도(sonority)는 발화할 때 폐의 공기 흐름과 운동 에너지(Kinetic energy)를 공명도로 명시되는 음향에너지(acoustic energy)로 표현한 것이다. 본 연구는 이러한 관점에서 디지털 텍스트의 속성인 음절을 기반으로 음운론적 정의와 특성을 살펴보고 운율을 다이어그램을 통해 시각화하기 위한 방법을 연구한다. 실험을 통해 디지털 텍스트를 발음기호로 변환한 후, 모든 언어속의 리듬에서 출발된 음절의 공명도를 사용하고 디지털 텍스트를 음절화하여 운율 정보를 이미지로 시각화한다. 운율 정보를 시각화함으로써 디지털 텍스트의 음절 정보를 알 수 있고, 디지털 텍스트의 정서를 다이어그램을 통해 체계적인 공식에 의하여 사용자의 이해를 돕도록 표현한다. 이에 해당 텍스트의 운율을 보다 쉽게 파악하도록 설계하여 디지털 정보 시각화를 구현하는데 그 목적을 두고 있다.

  • PDF

혁신적 기업에서의 감성의 관심 및 활용의 추적: 연차보고서의 내용분석을 중심으로 (Tracking on Attention to the Emotion and Sensibility and its Application at the Innovative Companies: Focused on Content Analysis of Annual Reports)

  • 송민정
    • 감성과학
    • /
    • 제19권1호
    • /
    • pp.39-48
    • /
    • 2016
  • 본 연구는 혁신적 기업에서 감성에 대한 인식 및 활용에 대해 기업의 연차보고서의 내용분석을 통해 밝히고자 하였다. 연차보고서는 현재 기업이 제공하는 상품(제품 및 서비스)에 대한 설명과 기업의 성과 및 방향에 대해 기술하였기 때문에 기업의 감성에 대한 관심 및 활용을 파악하기 위한 내용분석에 적합한 데이터이다. 감성에 대해서는 그 용어가 국내외에서 혼재되어 사용되고 있어, 연관 단어인 '감각', '감성', '정서'와 해당 영단어인 'sensibility'와 'sense', 'emotion', 'feeling', 'affection'의 사전적 정의를 분석하여 서로의 관계를 분석하였고, 본 용어들을 모두 내용분석에 포함하였다. 혁신적 기업을 선정을 위해 경제 학술지 Fast company에서 발표하는 2009년과 2014년의 'The world's 50 most innovative companies'의 리스트에 포함된 기업으로 추출하였다. 그 기업의 연차보고서를 바탕으로 상호 비교하여 2009년과 2014년 사이의 감성의 인식 및 활용에 대한 기업의 변화를 추적하였다. 내용분석의 정량적인 결과에서는 혁신성과 감성의 관련성이 강하지 않다고 판단되나, 정성적인 결과에는 5년 사이에 '감각(sense)'과 '감정(feeling)'에 대한 관심이 증대되고 있음을 확인하였다. 결론적으로, 기업에서 전략적으로 추구하는 혁신성의 방향이 기술 선도 및 차별화에서 사용자 경험 만족으로 옮겨지고 있으며, 사용자의 감각 및 감정을 측정, 평가, 표현하고자 하는 기업의 수가 증대되고 있음을 밝혔다.

웹 문서의 정보블럭 식별을 통한 효과적인 사용자 프로파일 생성방법 (An Effective User-Profile Generation Method based on Identification of Informative Blocks in Web Document)

  • 류상현;이승화;정민철;이은석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.253-257
    • /
    • 2007
  • 최근 웹 상에 정보가 폭발적으로 증가함에 따라, 사용자의 취향에 맞는 정보를 선별하여 제공하는 추천 시스템에 대한 연구가 활발히 진행되고 있다. 추천시스템은 사용자의 관심정보를 기술한 사용자 프로파일을 기반으로 동작하기 때문에 정확한 사용자 프로파일의 생성은 매우 중요하다. 사용자의 암시적인 행동정보를 기반으로 취향을 분석하는 대표적인 연구로 사용자가 이용한 웹 문서를 분석하는 방법이 있다. 이는 사용자가 이용하는 웹 문서에 빈번하게 등장하는 단어를 기반으로 사용자의 프로파일을 생성하는 것이다. 그러나 최근 웹 문서는 사용자 취향과 관련 없는 많은 구성요소들(로고, 저작권정보 등)을 포함하고 있다. 따라서 이러한 내용들을 모두 포함하여 웹 문서를 분석한다면 생성되는 프로파일의 정확도는 낮아질 것이다. 따라서 본 논문에서는 사용자 기기에서 사용자의 웹 문서 이용내역을 분석하고, 동일한 사이트로부터 얻어진 문서들에서 반복적으로 등장하는 블록을 제거한 후, 정보블럭을 식별하여 사용자의 관심단어를 추출하는 새로운 프로파일 생성방법을 제안한다. 이를 통해 보다 정확하고 빠른 프로파일 생성이 가능해진다. 본 논문에서는 제안방법의 평가를 위해, 최근 구매활동이 있었던 사용자들이 이용한 웹 문서 데이터를 수집하였으며, TF-IDF 방법과 제안방법을 이용하여 사용자 프로파일을 각각 추출하였다. 그리고 생성된 사용자 프로파일과 구매데이터와의 연관성을 비교하였으며, 보다 정확한 프로파일이 추출되는 결과와 프로파일 분석시간이 단축되는 결과를 통해 제안방법의 유효성을 입증하였다.)으로 높은 점수를 보였으며 내장첨가량에 따른 관능특성에서는 온쌀죽은 내장 $2{\sim}5%$ 첨가, 반쌀죽은 내장 $3{\sim}5%$ 첨가구에서 유의적(p<0.05)으로 높은 점수를 보였으나 쌀가루죽은 내장 $1{\sim}2%$ 첨가구에서 유의적(p<0.05)으로 낮은 점수를 보였다. 이상의 연구 결과를 통해 온쌀은 2%, 반쌀은 3%, 쌀가루는 4%의 내장을 첨가하여 제조한 전복죽이 이화학적, 물성적 및 관능적으로 우수한 것으로 나타났다.n)방법의 결과와 비교하였다.다. 유비스크립트에서는 모바일 코드의 개념을 통해서 앞서 언급한 유비쿼터스 컴퓨팅 환경에서의 문제점을 해결하고자 하였다. 모바일 코드에서는 프로그램 코드가 네트워크를 통해서 컴퓨터를 이동하면서 수행되는 개념인데, 이는 물리적으로 떨어져있으면서 네트워크로 연결되어 있는 다양한 컴퓨팅 장치가 서로 연동하기 위한 모델에 가장 적합하다. 이는 기본적으로 배포(deploy)라는 단계가 필요 없게 되고, 새로운 버전의 프로그램이 작성될지라도 런타임에 코드가 직접 이동하게 되므로 버전 관리의 문제도 해결된다. 게다가 원격 함수를 매번 호출하지 않고 한번 이동된 코드가 원격지에서 모두 수행을 하게 되므로 성능향상에도 도움이 된다. 장소 객체(Place Object)와 원격 스코프(Remote Scope)는 앞서 설명한 특징을 직접적으로 지원하는 언어 요소이다. 장소 객체는 모바일 코드가 이동해서 수행될 계산 환경(computational environment

  • PDF

빅데이터를 활용한 건축물 화재위험도 평가 지표 결정 (Determination of Fire Risk Assessment Indicators for Building using Big Data)

  • 주홍준;최윤정;옥치열;안재홍
    • 한국건축시공학회지
    • /
    • 제22권3호
    • /
    • pp.281-291
    • /
    • 2022
  • 본 연구에서는 빅데이터를 활용하여 건축물의 화재위험도 평가에 필요한 지표를 결정하였다. 건축물에서 화재위험도에 영향을 미치는 원인은 대부분 건축물만을 고려한 지표로 고착화되어 있기 때문에 제한적이고 주관적인 평가가 수행되어왔다. 따라서, 빅데이터를 활용하여 다양한 내·외부 지표를 고려한다면 건축물의 화재위험도 저감을 위한 효과적인 대책을 도모할 수 있다. 지표 결정에 필요한 데이터를 수집하기 위해 먼저 질의어를 선정하고, 웹 크롤링 기법을 이용하여 비정형 데이터 형식의 전문 문헌을 수집하였다. 문헌 내 단어를 수집하기 위해 사용자 용어사전 등록, 중복 문헌 및 불용어 제거의 전처리 과정을 수행하였으며, 선행 연구를 검토하여 단어를 4개의 요소로 분류하고 각 요소에서 위험도와 관련된 대표 키워드를 선정하였다. 그리고 대표 키워드의 연관검색어 분석을 통해 파생되는 위험도 관련 지표를 수집하였다. 지표의 선정 기준에 따라 수집된 지표를 검토한 결과, 20개의 건축물 화재위험도 지표를 결정할 수 있었다. 본 연구 방법론은 건축물 화재위험의 저감 대책 수립을 위한 빅데이터 분석의 적용 가능성을 나타내며, 결정된 지표는 건축물 화재위험도 평가를 위한 참고자료로 사용될 수 있을 것이다.

소셜미디어에 나타난 코로나 바이러스(COVID-19) 인식 분석 (Trend Analysis of Corona Virus(COVID-19) based on Social Media)

  • 윤상후;정상윤;김영아
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.317-324
    • /
    • 2021
  • 본 연구는 국내 소셜미디어를 기반으로 코로나 확산 시기에 따른 코로나19 관심사 변화를 텍스트 기반으로 살펴 보았다. 연구자료는 2020년 1월 20일부터 8월 15일까지 네이버와 다음의 블로그와 카페에 올라온 글이다. 코로나 확산시기는 총 3단계로 분류하였다. 중국에서 발견된 코로나19가 한국에 확산되기 시작한 1월 20일부터 2월 17일을 '전조기', 대구를 중심으로 본격적 확산을 진행된 2월 18일부터 4월 20일을 '심각기', 그리고 일 확진자 수가 안정화되는 4월 21일부터 8월 15일을 '안정기'로 명명하였다. 코로나19와 연관된 상위 50개 단어를 추출하여 TF-IDF를 이용하여 군집 분석 하였다. 분석결과 전조기는 코로나 '상황'에 관련된 텍스트가 많았고, 심각기에는 '국가'와 '감염경로'에 관련된 텍스트가 많았다. 안정기에는 '치료'가 주로 언급되었다. 시기와 무관하게 공통적으로 언급이 많이 된 단어는 '감염', '마스크', '사람', '발생', '확진', '정보'이다. 시기별 감정의 변화를 살펴보면 시간이 지남에 따라 긍정의 비율이 높아지고 있다. 카페와 블로그는 글쓴이의 생각과 주관이 담긴 글을 인터넷을 통해 공유하므로 코로나19로 인한 비대면 시대의 주요 정보공유 공간이다. 그러나 정보전달의 선택성과 임의성이 존재하므로 소셜미디어에서 생산되는 정보를 비판적으로 바라보는 시각이 필요하다.

텍스트 마이닝을 이용한 2015 개정 중학교 기술·가정 교과서의 주생활 단원 내용분석 (Content Analysis of the 'Housing' Unit in the 2015 Revised Middle School Technology and Home Economics Textbook Using Text Mining)

  • 김도연
    • 한국가정과교육학회지
    • /
    • 제34권2호
    • /
    • pp.1-19
    • /
    • 2022
  • 본 연구의 목적은 2015 개정 중학교 기술·가정 교과서의 키워드를 분석하여 주생활 단원의 핵심개념과 내용구성을 파악하는 것이다. TEXTOM 프로그램으로 교과서의 단어 빈도분석과 네트워크 분석을 실시하였고, UCINET 프로그램으로 중심성과 CONCOR 분석을 하였다. 분석결과는 다음과 같다. 첫째, 주생활 단원의 내용 체계는 '가정생활과 안전' 영역의 '생활문화'와 '안전'으로 구분되어 있다. 둘째, '안전' 단원에서는 실내, 발생, 사용, 소음, 안전사고 순으로 출현빈도가 높으며, 주생활과 안전사고, 예방과 관련된 단어들이 서로 밀접하게 연결되어 있다. '생활문화' 단원은 공간, 주거, 가족, 사용, 주거공간 순으로 출현빈도가 높으며, 키워드 간 연관성도 높게 나타났다. 셋째, '안전' 단원은 실내, 발생, 사용 등이, '생활문화' 단원은 공간, 가족, 주거 등이 영향력 있는 핵심개념으로 나타났다. 넷째, '안전' 단원은 '안전한 주생활', '쾌적한 주거환경'으로, '생활문화' 단원은 '주거공간 구성', '공간 활용', '주거가치관과 생활양식', '주생활 문화'로 구성되어 있다. 이와 같은 결과를 통해 향후 주생활 교육의 방향성과 정체성을 형성하기 위한 기초자료를 제공한다는 점에서 본 연구의 의의가 있다.

InferSent를 활용한 오픈 도메인 기계독해 (Open Domain Machine Reading Comprehension using InferSent)

  • 김정훈;김준영;박준;박성욱;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.89-96
    • /
    • 2022
  • 오픈 도메인 기계독해는 질문과 연관된 단락이 존재하지 않아 단락을 검색하는 검색 기능을 추가한 모델이다. 문서 검색은 단어 빈도 기반인 TF-IDF로 많은 연구가 진행됐으나 문서의 양이 많아지면 낮은 성능을 보이는 문제가 있다. 아울러 단락 선별은 단어 기반 임베딩으로 많은 연구가 진행됐으나 문장의 특징을 가지는 단락의 문맥을 정확히 추출하지 못하는 문제가 있다. 그리고 문서 독해는 BERT로 많은 연구가 진행됐으나 방대한 파라미터로 느린 학습 문제를 보였다. 본 논문에서는 언급한 3가지 문제를 해결하기 위해 문서의 길이까지 고려한 BM25를 이용하며 문장 문맥을 얻기 위해 InferSent를 사용하고, 파라미터 수를 줄이기 위해 ALBERT를 이용한 오픈 도메인 기계독해를 제안한다. SQuAD1.1 데이터셋으로 실험을 진행했다. 문서 검색은 BM25의 성능이 TF-IDF보다 3.2% 높았다. 단락 선별은 InferSent가 Transformer보다 0.9% 높았다. 마지막으로 문서 독해에서 단락의 수가 증가하면 ALBERT가 EM에서 0.4%, F1에서 0.2% 더 높았다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).