• Title/Summary/Keyword: 연결 강판

Search Result 64, Processing Time 0.024 seconds

Verification on the Compressive Behavior of Corrugated Steel Plates due to Details of Bolted Lap Joint (압축하중을 받는 파형강판 연결부 상세에 따른 구조거동 분석)

  • Oh, Hong Seob;Nam, Ki Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • This study is dealt with the experimental seam strength of deep corrugated steel plate which is used as underpasses, storm sewers and other buried applications. The soil-metal structure using deep corrugated plate should be sufficient to ensure safety for compressive loading. The experimental and theoretical results on the seam strength are accumulated enough to take the design guideline, even if the seam strength at the bolt connected lap joint in construction site can be varied depending on the connection detailing and the thickness of plate. In this study, compressive behavior of bolted lap jointed plates using various connection detail such as gasket, slot hole, washer was experimentally analyzed. From the test, failure pattern with an increases in the thickness of specimens was changed from plate bearing to bolt shearing. In case of thicker plates than 6.0mm, the structural performance of lap joint using gasket and slot hole is more effective than it of the plate adopted washer.

Comparison of Behavior of Connections between Modular Units according to Shape of Connector Plates (연결 강판 형상에 따른 모듈러 유닛 간 접합부의 거동 비교)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.467-476
    • /
    • 2016
  • For the connections between modular units in modular buildings, the bolted joints with connector plates are used commonly. The strength of structure is determined by the weakest part of structure and the connections may be weaker than the members being joined. Therefore, to check the safety of modular building, the structural performance of connections between modular units as well as that of beam-to-column connections should be evaluated. In this study, the behavior of module to module connection with straight and cross shaped connector plates is investigated by lateral cyclic tests according to KBC2009 0722.2.4 which shall be conducted by controlling the story drift angle in the width and the longitudinal direction respectively. All of test results generally show the stable ductile behavior up to 0.04rad drift levels and the tests in longitudinal direction show a superior energy dissipation per cycle in each of the load steps. However, the straight shaped connector plates have the degradation of stiffness with cyclic loading and the larger drift angle of column than the cross shaped connector plates.

Pull-out Resistance Capacity Evaluation of Perfobond Rib Shear Connector (유공강판 전단연결재의 인발저항성능 평가)

  • Kim, Young-Ho;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.853-859
    • /
    • 2008
  • As a new system of steel pipe pile cap reinforcement, the application of perforated flat bar bolted to the steel pipe pile head was suggested for the improvement of structural performance of footing structure. This study investigates the structural characteristics of perforated flat bar shear connectors according to shape and diameter of hole, number of rebars passing through the hole and the depth of settlement. The result shows several requirements to ensure sufficient pull-out resistance and ductility such as that the hole diameter excluding diameter of rebar should exceed the size of aggregates; the hole should be perforated with diameter as the half of plate height; and the adequate depth of settlement should be ensured for the optimal performance.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Structural Capacity of Steel Plate Walls According to Various Infill Plate Details (다양한 웨브강판 상세에 따른 골조강판벽의 구조성능)

  • Park, Hong Gun;Choi, In Rak;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • In this study, we performed an investigation on the variations in the structural capacity of steel plate walls with various infill plate details. Five three-story plate walls with thin web plates were tested. Parameters for the test specimens were the connection details between the moment frame and infill plates, such as weld and bolt connections, the location and length of weld connection, and coupling wall. Regardless of the details of infilled steel plate, the steel plate wall specimens showed excellent initial stiffness, strength, and energy dissipation capacity. However, the wall with bolt-connected infill plates showed slightly low deformation capacity. This result showed that for workability and cost efficiency,various wall details can be used in practice without causing a significant decrease in the structural capacity of steel plate walls. A method for making projections on strength and energy dissipation capacity of steel plate wall specimens with various details was developed.

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

Evaluation of Buckling Strength of Surface Plates in Steel-Plate Concrete Walls with Studs and Tie-bars (스터드 및 타이바를 가진 강판콘크리트 벽체의 표면강판 좌굴강도 평가)

  • Koo, Jimo;Lee, Kyungkoo;Kim, Wonki;Lee, JongBo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.129-138
    • /
    • 2016
  • Buckling of surface plates is an important limit state in Steel-Plate Concrete (SC) walls under axial compression. The surface plates may be anchored to concrete using connectors of studs or tie-bars. In this paper, the effects of studs and tie-bars on buckling of surface plates were evaluated by conducting tests. Experiments have three types of connectors; all studs, all tie-bars, and the combination of studs and tie-bars. Also, experiments have the various ratios of stud or tie-bar spacing to surface plate thickness. The experimental investigation shows that the buckling shape and strength of the surface plate of SC wall with the combination of studs and tie-bars have good agreements with that of the surface plate of SC walls with all studs or all tie-bars.

Determination of Efficient Shear Stud Spacing in Steel-Concrete Panel(SCP) considering Local Buckling Behavior (국부좌굴 현상을 고려한 강판 콘크리트 패널의 효율적인 스터드 배치 간격 설정)

  • Kim, JoungRae;Lee, WonHo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.479-484
    • /
    • 2017
  • In this paper, finite element analysis of Steel-Concrete panel(SCP) was conducted considering the local buckling behavior and the optimized design of shear studs arrangement was studied by comparing with design guidelines. If the spacing of the studs of SCP is widened, it is easy to be manufactured and the weight fo members become lighter. On the other hand, the steel plate would be vulnerable to the local buckling behavior. Therefore, the guidance and design of SCP limit the maximum spacing of the studs to prevent the development of shear cracks and local buckling, however this is based on the design criteria of the other composite structures. Parameter studies with changes in stud spacing on steel plate and SCP are conducted and the obtained result was compared with values given in design guidelines.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

The Structural Performance Evaluation of Steel Pipe Pile Cap with Perfobond Rib Shear Connector (유공강판 전단연결재로 보강된 강관말뚝머리의 구조 성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.843-851
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as requirement of shear key, disposition of reinforcing bars and insurance of anchoring length of reinforcements. This study suggests a new type of steel pipe pile cap system with perforated flat bar shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out and bending behavior are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.