• Title/Summary/Keyword: 역단층운동

Search Result 18, Processing Time 0.035 seconds

Tracking of the Moryang Fault and It's Characteristics (모량단층의 분포와 특성)

  • Choi, Sung-Ja;Ryoo, Chung-Ryul;Choi, Jin-Hyuck
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.389-397
    • /
    • 2021
  • Moryang Fault is geomorphologically observed as a linear fault valley from Angang through Moryang, Duckhyun and Wondong to Gimhae, and contacts with Yangsan Fault, being obliquely away to the east, at Angang disrict. The fault valley appears a V-shape feature with a width from 100 to 300 m, and has fragmental zones of the fault along the valley on a small scale. Nine fault-outcrop localities were found along the nine-kilometers valley between Daehyun-ri, Gyeongju, and Baenaemi-gogae, Yangdong-ri, Ulsan. The fault strikes the North-North-East to the Northeast and dips to the Northwest with high angles, and reveals it had been undergone predominantly sinistral reverse fault movement sense, left-lateral and right-lateral strike-slip sense in bedrocks. However, after unconsolidated sediments, there was the top-up-to-the-east dextral reverse fault movement.

Development History of Neotectonic Fault Zone in the Singye-ri Valley, Oedong-eup, Gyeongju, Korea (경주시 외동읍 신계리 계곡에 발달하는 신기 단층대 발달사)

  • Kang, Ji-Hoon;Son, Moon;Ryoo, Chung-Ryul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • The Ulsan Fault Zone (UFZ) of NNW trend is developed in the Gyeongsang Basin, the southeastern part of the Korean Peninsula, and the Quaternary faults have been found around the UFZ. The faults generally thrust the Bulguksa igneous rocks of Late Cretaceous-Early Tertiary upon the Quaternary deposits or are developed within the Quaternary deposits. They mainly show the reverse-slip sense of top-to-the west movement. The lines connecting the their outcrop sites show a zigzag-form which is similar to the orientation of their fault surfaces which show the various trends, like (W)NW, N-S, (E)NE, ENE trends. The E-W trending dextral strike(-slip) fault is found in the Quaternary deposits of the Singye-ri valley. It cuts the N-S trending reverse fault and are cut by the N-S trending thrust fault again. Two types of at least two times of Quaternary tectonic movements related to the formation of neotectonic fault zone in the Singye-ri valley are considered from such the geometric and kinematic characteristics of Quaternary faults. One is the reverse faulting of N-S trend by the E-W directed 1st compression and associated the strike-slip tear faulting of E-W trend, and then the thrust faulting of N-S trend by the E-W directed 2nd compression. The other is the reverse faulting of N-S trend, and then the dextral strike-slip faulting of E-W trend by the NW-SE directed compression, and then the thrust faulting of N-S trend. In this paper is suggested the development history of Singye-ri neotectonic fault zone on the basis of the various orientations of Quaternary fault surfaces around the UFZ, and the zigzag-form connecting line of their outcrop sites, and the compressive arc-shaped lineaments which convex to the west reported recently in the Yangsan Fault Zone.

경주시 마동 탑골에 발달하는 제4기 단층(탑골단층)의 구조적 특성

  • Ryoo, Chung-Ryul;Son, Moon;Lee, Yung-Hee;Choi, Sung-Ja
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.183-191
    • /
    • 2002
  • 울산단층대 동변인 경북 경주시 마동 탑골 부근에 발달하는 제4기단층을 기재한다. 이 단층(이후 탑골단층)은 제3기초의 화강암과 제4기의 하성 사력층의 경계부 부근에서 여러 조의 단층들이 단층대를 이루며, 북북서 내지 남-북의 주향에 동측으로 $20^{circ}{\;}~45^{\circ}$ 의 경사를 보인다. 이 단층대는 서측으로부터 제4기 사력층 내의 역단층 3조와 제4기층을 화강암과 이를 부정합으로 덮는 제4기층이 올라탄 역단층 1조로 구별되며, 복합적인 역단층성 단층대의 양상을 보인다. 단층조선은 남동 방향($125^{\circ}$)으로 $20^{\circ}$ 침강한다. 이는 남동-북서 압축에 기인한 역단층성운동에 의해 생성된 것으로 보인다. 이 단층대는 불국사 일원에서 이미 알려진, 보다 서편에 발달하는 북서-남동 방향의 제4기단층선과는 다른 또 하나의 제4기단층선으로 확인된다.

  • PDF

A Report for the Quaternary Gaegok 6 Fault Developed in the Mid-eastern Part of Ulsan Fault Zone, Korea (울산단층대 중동부에 발달하는 제4기 개곡 6단층에 대한 보고)

  • Ryoo, Chung-Ryul
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.635-643
    • /
    • 2009
  • In this paper, a Quaternary fault is described, which is developed in the mid-eastern part of Ulsan Fault Zone, near the southern Gaegok-ri, Oedong-eub, Gyeongju, Korea. The Gaegok 6 fault is developed along the contact between Early Tertiary granite and Quaternary gravel deposit overlying unconformably the granite. The fault strikes $N02^{\circ}{\sim}22^{\circ}E$ and dips $45^{\circ}{\sim}80^{\circ}$ to the west. This fault has a 30~50 cm wide cataclastic shear zone with gouge zone, mixed with Quaternary sediments and fault breccia of granite. In the main Quaternary fault plane, the orientation of striation is $17^{\circ}$, $356^{\circ}$, indicating a dextral strike-slip faulting with some normal component. There is another striation ($78^{\circ}$, $278^{\circ}$ and $43^{\circ}$, $270^{\circ}$) with reverse-slip sense, developed on the subsidiary plane which cuts the main Quaternary fault plane. In brief, the fault has been developed between the granite in the western part and the Quaternary gravel deposit in the eastern part. The western block of fault is uplifted. The striations and movement senses of faults indicate multiple compressional stages in this region. The fault has a similar orientation, westward dipping geometric pattern, and reverse sensed kinematic pattern with Gaegok 1 fault developed in the north. Thus, the Gaegok 6 fault is probably a southern extension of Gaegok 1 fault.

Earthquake Mechanism in and around the Korean Peninsula (한반도 및 인근의 지진 메카니즘 특성)

  • Jun, Myung-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-5
    • /
    • 2008
  • In and around the Korean Peninsula, 9 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. This indicate that not only the subducting Pacific Plate but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate.

  • PDF

The First Discovery of Quaternary Fault in the Western Part of the South Yangsan Fault - Sinwoo Site (양산단층 남부 이서 지역에서 최초로 발견된 제4기 단층 - 신우지점)

  • Choi, Sung-Ja;Ghim, Yong Sik;Cheon, Youngbeom;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • During the detailed geological survey around the southern Yangsan Fault, we newly found a Quaternary fault outcrop, which cuts unconsolidated sediments. The fault named the Sinwoo site, located in the Sinwoo pasture, Miho-ri, Duseo-myeon, Ulsan metropolitan city, is the first discovered Quaternary fault near the western part of the south Yangsan Fault. In this study, we provide information on characteristics of fault geometry and unconsolidated sediment at Sinwoo site based on the analysis data of topography, drainage, and lineament around the study site. The fault site is situated at pediment slope, but fan-shaped middle terrace, as well as thick sediment exposed at low terrace, indicates that the unconsolidated sediments have been deposited in the alluvial fan environment. The drainage develops to the third-order drainage system, and the first and the second drainage system meet at right angles to each other and form a radial drainage pattern. In addition, the NE-SW direction lineaments can be identified on the basis of the curvature of the river and the step of the topographic relief, running over the Sinwoo site. The fault of $N30-35^{\circ}E/79-82^{\circ}SE$ shows ~ 5.8 m apparent vertical offset and dominantly reverse-slip sense based on slickenline, rotation of pebbles, and drag folding at footwall. However, some discontinuous sediments observed in the footwall are interpreted as fissure-filling materials due to the strike-slip movement. Now, we are under multidisciplinary investigations of additional field survey and age dating in order to determine the evolution of Sinwoo site fault during the Quaternary.

Focal Mechanism Solutions of Microearthquakes in the Southwestern Part of the Korea Peninsula (한반도 남서부에서 발생한 미소지진의 진원 기구해 분석)

  • Cho, Hee-Kyu;Kang, Tae-Seob;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.341-347
    • /
    • 2006
  • Focal mechanisms were analyzed for the seven earthquakes which occurred in the southwestern part of the Korea Peninsula from 2001 to 2005. Grid searches are performed to fit distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The focal mechanism solutions imply that most of the events have strike-slip sense including partially thrust component. The compressional axes of the solutions are predominantly ENE-WSW or NE-SW indirections. This result is similar to the directions of the principal compressional axes for major earthquakes occurred around the Korea Peninsula.

Friction-dependent Slip Behavior of Imgok Fault under the Present-day Stress Field (현생 응력하에서 단층 마찰계수에 따른 임곡단층의 거동 가능성 해석)

  • Na, Hyun-Woo;Chang, Chandong;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • We carried out geometrical, kinematic, and geomechanical analyses on a lineament (the Imgok fault) near Gangneung, observed in ASTER images and aerial photographs, and field surveys. Earthquake focal mechanism solutions, used to estimate the present-day stress state, revealed that the direction of maximum compression is approximately N$70^{\circ}$E and that the stress condition is in favor of either strike-slip or reverse movement on the fault. The strike of the fault is not ideal for slip under the present-day stress field and thus the fault has a low slip tendency. However, the fault may be able to slip if the frictional coefficient (${\mu}$), representing the resistance of the fault to slip, is sufficiently low (e.g., ${\mu}$ < 0.25).

Focal Mechanism in and around the Korean Peninsula (한반도 및 주변의 지진 메카니즘 특성)

  • Jun, Myung-Soon;Jeon, Jeong-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.198-202
    • /
    • 2010
  • In and around the Korean Peninsula, 18 intraplate earthquake focal mechanisms since 1936 were analyzed to understand the characteristic of focal mechanism and regional stress orientation and tectonics. These earthquakes are largest ones from the last century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW direction. This mechanism pattern and the direction of maximum stress axis is very similar with northeastern part of China and southwestern part of Japan. However they are quite different with the eastern part of East Sea. This indicate that not only the subducting Pacific Plate from east but also the indenting Indian Plate controls focal mechanism in the far east of the Eurasian Plate.

A Paleoseismological Study of the Yangsan Fault-Analysis of Deformed Topography and Trench Survey (양산단층대의 고지진학적 연구 -변위지형 분석 및 트렌치 조사-)

  • Gyeong, Jae Bok;Lee, Gi Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.155-168
    • /
    • 1999
  • The paleoseismological importance of the Yangsan fault zone was examined by historical earthquake data, aerial photograph, and trench survey of the area. Occurrences of great earthquakes during the historical time indicate that the Yangsan and/or Ulsan fault have been active during the late Quaternary and generated historical events. Geomorphological evidences of the recent fault activity are clearly shown both in the northern segment (Yugye-ri, Tosung-ri and Naengsu-ri areas) and in the southern segment (Eonyang to Tongdosa areas) of the Yangsan fault. The main Yangsan fault is characterized by fault gouges and NNE-SSW lineaments. The reverse faulting in the Yugye-ri area generated about three-mater displacement of the lower terrace deposits. On the other hand, a major strike-slip movement with a minor component of 5-12 m vertical displacement was identified by the offset of the higher terrace surface in the Eonyang area.

  • PDF