• Title/Summary/Keyword: 엔진 마운트

Search Result 139, Processing Time 0.033 seconds

The effect of a pole length on damping force of MR engine mount (MR엔진마운트의 전극 길이가 감쇠력에 미치는 영향에 대한 실험적 연구)

  • Kang, Yung-Suk;Lee, Hyun-Chang;Lee, Hyung-Sik;Park, Woo-Cheul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.323-325
    • /
    • 2007
  • 본 연구에서는 MR유체를 적용한 엔진마운트 시스템을 제안하고, 자지장이 형성되는 전극의 길이변화가 엔진마운트의 감쇠력 변화에 미치는 영향에 대하여 실험적으로 고찰하였다. 가진주파수가 증가할수록 마운트로부터 전달되는 힘은 감소하지만, 공급하는 전류의 세기가 증가할수록 전달되는 힘은 증가하였다. 그러나 전극부의 길이변화는 전달되는 힘의 변화에 영향을 거의 미치지 않음을 확인하였다.

  • PDF

Performance Evaluation of a Mixed-Mode Type ER Engine Mount (I);Manufacturing and Test of Engine Mount (복합모드형 ER엔진마운트의 성능평가 (I);엔진마운트의 제작 및 시험)

  • Choe, Yeong-Tae;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.370-377
    • /
    • 2000
  • This paper presents a mixed-mode type ER(electro-rheological) engine mount, and its vibration control performance for a passenger vehicle is presented. The field-dependent yield stress of a transfo rmer oil-based ER fluid is empirically distilled in both shear and flow modes. This is then incorporated with the governing equation of motion of the proposed mixed-mode(shear mode plus flow mode) type engine mount. The damping force is analyzed with respect to the intensity of the electric field and design parameters such as electrode gap. Subsequently, the ER engine mount which is equivalent to the conventional hydraulic engine mount in terms of the damping level is designed and manufactured. Both computer simulation and experimental test are undertaken in order to evaluate vibration isolation performance. In addition, this performance is compared with that of the conventional hydraulic engine mount.

The vibration Analysis in Case of Key-off of a Jeep by Using CAD/CAE (CAD/CAE을 이용한 승용 Jeep의 Key-off시 진동 해석)

  • An, Gie-Won;Song, Sang-Kee;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.5-13
    • /
    • 1992
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system has direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key-off of a jeep by experiment and computer simulation using a general purpose mechanical system program, DADS. The computer simulation model consists of the engine, body including frame, and front and rear axles and each axle has right and left tires. The force element between body and suspension is modeled as a combination of suspension spring and damper, and the unsprung mass has roll and pitch motion. The body shake obtained from experiment was compared with the result of computer simulation. Parametric study of the body shake on engine key-off is performed with changing the stiffness of engine mount rubber, the engine mount installation angle and position of engine mounts by using the verified computer simulation model.

  • PDF

Simulation on the Reduction of Interior Noise using the Transfer Path Analysis of the Active Engine Mount (엔진마운트의 전달경로해석을 통한 실내소음저감 시뮬레이션)

  • Lee, Choong-Hwi;Kim, Young-Ho;Choy, Hyun-Joon;Won, Jong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.166-170
    • /
    • 2008
  • In this study, it proved that transfer path analysis is a proper technique to estimate the interior noise from comparing measured interior noise in case of 3 point supported engine mount system. And the simulation of the vibration isolation for active engine mount using FXLMS algorithm is performed. Also, it verified that reduction of estimated interior noise from transfer path analysis and simulation of the vibration isolation.

  • PDF

Performance Optimization of Electromagnetic Active Engine Mount (전자식 능동 엔진 마운트 성능 최적화)

  • Kim, Won-Kyu;Kim, Youn-Su;Lee, Wan-Chul;Hong, Sung-Woo;Kim, Gui-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.514-519
    • /
    • 2011
  • Recently, the interest in technologies for a highly efficient powertrain, i.e. a variable displacement engine or a light weight car body, to improve the fuel efficiency of automobile saving the environment has been increased. However this trend deteriorates NVH performance of a vehicle and the use of a conventional engine mounting system becomes unsatisfactory. In order to solve this dilemma, an active engine mounting system that could isolate or cancel out vibrations occurred at the powertrain was suggested. In this paper, In order to optimize the electromagnetic active engine mount performance, the actuator of the engine mount through FEM analysis and optimal design, noise and elastomer testing of the prototype through the optimal design of actuators for the electromagnetic active engine mount on the impact of the performance improvement is verified.

  • PDF

Design and Performance Test of Rubber Engine Mount for Isolation Large Structures (방진고무를 이용한 대용량 엔진마운트의 제작 및 성능시험)

  • 유춘화;김충식;박상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.93-97
    • /
    • 1993
  • 방진고무는 진동을 방지하여 다른 구조물의 진동전달 차단은 물론, 장비의 수명연장 및 효율을 증가시키기 위한 목적으로 사용되는데 이러한 방진고무 의 동적특성을 일반화하는 것은 어렵기 때문에 방진고무 시편의 동특성 해 석시험 결과치를 기준으로 원하는 성능에 부합하도록 방진고무의 재질을 선 정하고 사양에 의한 엔진마운트를 설계 제작하여야 한다. 이번에 제작한 UEM 엔진마운트는 해상용, 육상용 설비에 적용 가능하며, 특히 해상용에 적 용하고 외부 환경에 의한 부식으로부터 방진고무 및 기자재를 보호하기 위 하여 하우징을 특수재질로 제작하였고, 수직.수평력을 고려하여 큰 하중에 견딜 수 있도록 원추형 형상설계와 강성을 보강하였다. 특히, 원추형 형상으 로 제작하여 하중을 일정하게 분산시키고, 사용 가능한 선형영역을 확대 시 켰으며, Buffer(Steel Bar)를 이용하여 높은 파고 등에 의한 외부 충격량에 따른 큰 변위의 발생으로부터 설비를 보호할 수 있다. 본 논문에서는 물리적 특성이 같은 방진고무를 사용하고, 적층 수만 다르도록 두가지 모델 UEM-155와 UEM-255를 설계 제작하여 수직.수평방향의 정적시험, 동적시 험, 현장 장착시험 등을 수행함으로써 기업에서 요구한 사양에 적합한가를 고찰하였다.

  • PDF

System Identification with Completely Unknown Periodic Disturbances in Active Engine Mount Control Application (엔진마운트 능동제어용 시스템인식기술)

  • 이수철
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.1
    • /
    • pp.58-62
    • /
    • 1999
  • This paper shows that is possible to identify the system's input-output dynamics exactly in the presence of unknown periodic disturbances for the Active Engine Mount Control Application .The disturbance frequencies and waveforms can be completely unknown and arbitrary. Only measurements of a control excitation signal and the disturbance-contaminated response are used for identification. Examples are given to illustrate the method, including the identification and vibration control of active engine mount for automobile.

  • PDF

Optimal Design of Vehicle Engine Mount (차량 엔진마운트 최적 설계)

  • Kang, Koo-Tae;Won, Kwang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.361-368
    • /
    • 2001
  • This paper introduces optimization techniques to design engine mount properties for passenger vehicle. The design targets are divided into three cases such as optimal positioning of powertrain modes, minimizing vibration of deriver's seat in idling and driving conditions. The proper models, mechanisms of vibration, and characteristics of optimization problems are discussed.

  • PDF

Integrated System for Dynamic Analysis and Optimal Design of Engine Mount Systems (엔진 마운트의 동특성 해석 및 최적설계 시스템)

  • 임홍재;성상준;이상범
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount (압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰)

  • Han, Young-Min
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.203-209
    • /
    • 2020
  • A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.