• Title/Summary/Keyword: 엔지니어링 모델

Search Result 507, Processing Time 0.034 seconds

Establishment of a Dynamic Factor Prediction Module for Risk Assessment in Coastal Activity Sites (연안활동장소 위험도 평가를 위한 동적요소 예측 모듈 구축)

  • Young Jae Yoo;Dong Soo Jeon;Won Kyung Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.95-101
    • /
    • 2023
  • Recent persistent coastal developments have expanded recreational areas and enhanced accessibility. However, this growth has also led to a rise in safety incidents. These accident factors can be divided into human-made and natural types. The latter is comprised of dynamic factors like waves, tides, sea fogs, and winds. While institutions like the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency already offer data on these dynamic factors, the resolution is often insufficient for a precise assessment of localized risks. In this study, to overcome these limitations, we utilized the dynamic information from existing open systems to construct a high-resolution numerical simulation. Through this, we developed an automated module to predict dynamic factors in localized coastal activity areas. Particularly during the module's construction, we compared and reviewed the numerical prediction results for waves with observed wave heights.

Engineering-scale Validation Test for the T-H-M Behaviors of a HLW Disposal System (고준위폐기물 처분시스템의 열적-수리적-역학적 거동 규명을 위한 공학적 규모의 실증시험)

  • Lee Jae-Owan;Park Jeong-Hwa;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.197-207
    • /
    • 2006
  • The engineering performance of a high level waste repository is significantly dependent upon the T-H-M behavior in the engineered barrier system. An engineering-scale test facility (KENTEX) was set up to validate the T-H-M behaviors in the buffer of a reference disposal system developed in the 2002. The validation tests started on May 31, 2005 and is now in progress. The KENTEX facility and validation test programme are introduced, and pre-operation calculations are also presented to give information on the sensitive location of sensors and operational conditions. This test will provide information (e.g., large-scale apparatus, sensors, monitoring system etc.) needed for 'in-situ' tests, make the validation of a T-H-M model for the T-H-M performance assessment of the reference disposal system, and demonstrate the engineering feasibility of fabricating and emplacing the buffer of a repository.

  • PDF

Assessment of Turbulence Models for Engine Intake and Compression Flow Analysis (엔진 흡입.압축과정의 유동해석을 위한 난류모델의 평가)

  • Park, Kweon-Ha;Kim, Jae-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1129-1140
    • /
    • 2008
  • Many turbulence models have been developed in order to analyze the flow characteristics in an engine cylinder. Watkins introduced k-${\varepsilon}$ turbulence model for in-cylinder flow, and Reynolds modified turbulence dissipation rate by applying rapid transformation theory, Wu suggested k-${\varepsilon}-{\tau}$ turbulence model in which length scale and time scale are separated to introduce turbulence time scale, and Orszag proposed k-${\varepsilon}$ RNG model. This study applied the models to in-cylinder flow induced by intake valve and piston moving. All models showed similar flow fields during early stage of intake stroke. At the end of compression stroke, ${\kappa}-{\varepsilon}$ Watkins, ${\kappa}-{\varepsilon}$ Reynolds and ${\kappa}-{\varepsilon}$ RNG predicted well second and third vortex, especially ${\kappa}-{\varepsilon}$ RNG produced new forth vortex near central axis at the lower part of cylinder which was not predicted by the other models.

Design of a Fuzzy Model-Based State Observer Using GAs (유전알고리즘에 의한 퍼지모델기반의 상태관측기 설계)

  • 이현식;손영득;김종화;유영호;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.162-170
    • /
    • 2001
  • This paper presents a scheme for designing a fuzzy model-bsaed state observer for nonlinear system. For this scheme, a Tagaki-Sugeno type fuzzy model whose consequent part is of the state space form is obtained. In describes the locally linear input/output relationship of a system. The parameters of the fuzzy model are adjusted using a genetic algorithm. Then. fuzzy full-order and reduced-order state observers are designed based on the fuzzy model. A set of simulation works is carried out to demonstrate the effectiveness of the proposed scheme.

  • PDF

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

A Numerical Analysis in Piezoelectric Fan Systems (압전세라믹 냉각팬에 대한 수치해석적 연구)

  • Park, Ji-Ho;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.994-1000
    • /
    • 2011
  • In this study, the piezoelectric fan cooling system is investigated. In order to find the proper geometry and configuration, the numerical model for the flow field and heat transfer investigation is used. A simplified nonlinear deformation model is employed for transient solutions of a piezoelectric fan with the dynamic mesh and user defined function capability. The results show that the cooling is most effective when the length of a piezoelectric fan is 5 cm and the cooling plate is 3 cm. The results can be used to develop a new design method of heat sink for piezoelectric fans.

Study on the Modeling of the Intake and Exhaust Systems of an SI Engine Using GT-POWER (GT-POWER를 이용한 SI 기관 흡·배기 계통의 모델링에 관한 연구)

  • Kim, Jeong-Seok;Yoon, Keon-Sik;Woo, Seok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.779-785
    • /
    • 2011
  • Prediction of the transient pressure variations and performance parameters has been carried out for an SI engine using one of commercial software, GT-POWER. Various models were applied for the calculation of properties of the plenum chamber, exhaust manifold and catalytic convertor which are very important components included in the intake and exhaust systems.

Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow (Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사)

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.

Evaluation of turbulent SGS model for large eddy simulation of turbulent flow inside a sudden expansion cylindrical chamber (급 확대부를 갖는 실린더 챔버 내부 유동에 관한 LES 난류모델의 평가)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.423-433
    • /
    • 2004
  • A large eddy simulation (LES) is performed for turbulent flow in a combustion device. The combustion device is simplified as a cylindrical chamber with sudden expansion. A flame holder is attached inside a cylindrical chamber in order to promote turbulent mixing and to accommodate flame stability. The turbulent sub-grid scale models are applied and validated. Emphasis is placed on the evaluation of turbulent model for the LES of complex geometry. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The calculated Reynolds number is 5000 based on the bulk velocity and the diameter of inlet pipe. The predicted turbulent statistics are evaluated by comparing with the LDV measurement data. The Smagorinsky model coefficients are estimated and the utility of dynamic SGS models are confirmed in the LES of complex geometry.

Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines(Second Paper) (4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구)

  • 윤건식;윤영환;우석근;신승한;서문진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.246-259
    • /
    • 2003
  • For predicting the performances of the four stroke cycle spark ignition engines. the gas behavior in the engine system has been analyzed. The calculations consist of two parts. the calculation of the gas behavior in the intake and exhaust systems which was described in the first paper, and the calculation of the variations of gas properties inside the engine cylinders. In this Paper the simulations for the in-cylinder processes were described for the MPI engine, naturally aspirated and turbocharged engines with a carburettor. With the combination of the calculations of the intake and exhaust systems and the calculation of the in-cylinder processes. the predictions of the engine Performances and the exhaust emission characteristics were carried out. And the result showed good agrements with the experimental results under wide range of operating conditions.