• Title/Summary/Keyword: 엑소좀

Search Result 10, Processing Time 0.022 seconds

Clinical Application of Exosomes for COVID-19 and Diagnosis (COVID-19 치료 및 진단을 위한 Exosome의 임상적 적용)

  • June Seok HEO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Exosomes are nano-sized membrane-bound extracellular vesicles containing various biological molecules, such as nucleic acids, proteins, and lipids, which can be used to modulate physiological processes. The exosomal molecules secreted by cells can be extensively used as tools for diagnosis and therapy. Exosomes carry specific molecules released by the cells they originate from, which can be transferred to surrounding cells or tissues by the exosome. For these reasons, exosomes can be exploited as biomarkers for diagnosis, carriers for drug delivery, as well as therapeutics. In stem cell technology, exosomes have been an attractive option because they can be used as safer therapeutic agents for stem cell-based cell-free therapy. Recently, studies have demonstrated the safety and efficacy of mesenchymal stem cell-derived exosomes in alleviating symptoms associated with coronavirus disease 2019 as they have anti-inflammatory and immunomodulatory potential. Performing multiple studies on exosomes would provide innovative next-generation options for clinical diagnostics and therapy. This review summarizes the use of exosomes focusing on their diverse roles. In addition, the potential of exosomes is illustrated with a focus on how exosomes can be exploited as powerful tools in the days to come.

Application of Exosome for Diagnosis and Treatment of Diseases in the Central Nervous System (중추신경계 질환의 진단과 치료를 위한 엑소좀의 활용)

  • Jia Bak;Yun-Sik Choi
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.754-765
    • /
    • 2023
  • Exosomes are a type of extracellular vesicle containing proteins and messenger and microRNAs; they are secreted by all cell types. Once released, exosomes are selectively taken up by other cells adjacent or at a distance, releasing their contents and reprogramming the target cells. Since exosomes are natural vesicles produced by cells as small sizes, it is generally accepted that exosomes have a non-toxic nature and non-immunogenic behaviors. Recently, exosomes have elicited scientific attention as drug delivery vehicles to the central nervous system. The central nervous system has a blood-brain barrier that makes it difficult for drugs to penetrate. Thus, the blood-brain barrier has been a major obstacle to the development of drugs for treating neurodegenerative diseases. However, accumulating evidence suggests that exosomes can cross the blood-brain barrier primarily through transcytosis. Consequently, exosomes are expected to become a new delivery vehicle that can cross the blood-brain barrier and deliver drugs into the brain parenchyma. In addition, since different types of exosomes are secreted depending on the cell type and disease state, exosomes can also be utilized as biomarkers for the diagnosis of diseases in the central nervous system. In this review, we summarized recent research trends on exosomes, including clinical trials as biomarkers and treatment options for diseases in the central nervous system.

Effect of Keratinocyte Derived Exosome on Proliferation and Migration on Human Skin Keratinocyte (각질형성세포 유래 엑소좀이 피부각질형성세포의 증식과 이주에 미치는 영향)

  • Kim, Do Yoon;Yu, Ho Jin;Hwang, Dae Il;Jang, Sang Hee;Lee, Hwan Myung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.359-366
    • /
    • 2016
  • Exosome, a small vesicle secreted from cells, has diverse functions depending on cell origins and tissue types and plays a important role in cell viability and intercellular communication. Recently, many researchers have demonstrated the use of exosomes for the treatment of cancers and immune diseases, and the development of diagnostic biomarker. However, the secretion mechanism of exosome from skin cell and its physiological functions in skin remain unclear. Thus, this study aimed to explore whether keratinocyte-derived exosome affects proliferation and migration in HaCaTs. Exosomes were isolated from HaCaTs by ExoQuick-TC and then boiled or unbolied. Boiled and unboiled exosome induced proliferation in HaCaTs in a dose-dependant manner ($0.1{\sim}20{\mu}g/mL$), respectively. Boiled and unboiled exosome at concentration of $20{\mu}g/mL$ increased proliferation level in HaCaTs by $186.96{\pm}3.87%$ and $193.48{\pm}10.48%$ compared with control group. Unboiled exosome stimulated migration in HaCaTs in a dose-dependent manner ($0.1{\sim}20{\mu}g/mL$), which reached a maxium at concentration of $20{\mu}g/mL$ ($179.39{\pm}4.89%$ of control), but boiled exosome did not affect HaCaT migration. In addition, unboiled exosome ($0.1{\sim}20{\mu}g/mL$) dose-dependently stimulated sprout outgrowth in HaCats. These results demonstrate that in exosome from HaCaTs, heat-stable components such as lipid may induce HaCaT proliferation and heat-unstable components such as protein may stimulate migration and sprout outgrowth in HaCaTs, thereby leading to reepithelialization and skin-wound healing activities. It is concluded that exosomes from HaCaTs may be used as cosmetic materials.

Skin Barrier Improvement Effect of Exosomal Nanovesicles Derived from Lactic Acid Bacteria (유산균 유래 엑소좀 유사 나노베지클의 피부 장벽 개선 효과)

  • Wang, Hyesoo;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.171-178
    • /
    • 2021
  • In this study, exosomal-like nano-vesicles derived from probiotics were isolated and various physiological activities were evaluated on the skin. This study show that Lactococcus lactis subsp. lactis (LL) are incubated, and then isolated LL derived exosomal nanovesicles (LVs) at the range of 70 ~ 200 nm by high-pressure homogenizer and ultrafiltration. The vesicle numbers were an average of 1.81 × 1011 particles/mL. This study finds out the bacterial nanovesicles' beneficial effect on the skin. Fibrillin (FBN1) gene expression increased by 23% in fibroblast cells. Fibronectin (FN1) and filaggrin (FLG) gene expression increased by 65% and 400% in keratinocytes. We could see that cornified envelope (CE) formation ability was increased by 30% compared to the control group. Furthermore, collagen type I alpha 1 (COL1A1) protein expression increased by 83% compared to the UV-irradiated control group. These results suggest that LVs could help skin barrier improvement and used as an ingredient for cosmetics or pharmaceuticals.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

Immunomodulatory Effect of Mesenchymal Stem Cell-Derived Exosomes in Lipopolysaccharide-Stimulated RAW 264.7 Cells (Lipopolysaccharide로 자극한 RAW 264.7 세포에서 성체줄기세포 유래 엑소좀(exosome)의 면역 조절 효과)

  • Jung, Soo-Kyung;Park, Mi Jeong;Lee, Jienny;Byeon, Jeong Su;Gu, Na-Yeon;Cho, In-Soo;Cha, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) are multipotent stem cells that can be differentiated into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, β-pancreatic islet cells, and neuronal cells. MSCs have been reported to exhibit immunomodulatory effects in many diseases. Many studies have reported that MSCs have distinct roles in modulating inflammatory and immune responses by releasing bioactive molecules. Exosomes are cell-derived vesicles present in biological fluids, including the blood, urine, and cultured medium of cell cultures. In this study, we investigated the immunomodulatory effects of mouse adipose tissue-derived MSCs (mAD-MSCs), cultured medium (MSC-CM) of mAD-MSCs, and mAD-MSC-derived exosomes (MSC-Exo) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. We observed that the expression levels of IL-1β, TNF-α, and IL-10 were significantly increased in LPS-stimulated RAW 264.7 cells compared to those in LPS-unstimulated RAW 264.7 cells. Additionally, these values were significantly (p < 0.05) decreased in mAD-MSCs-RAW 264.7 cell co-culture groups, MSC-CM-treated groups, and MSC-Exo-treated groups. MSCs can modulate the immune system in part by secreting cytokines and growth factors. We observed that immunomodulatory factors such as IL-1β, TNF-α, and IL-10 were secreted by mAD-MSCs under co-culturing conditions of mAD-MSCs with activated RAW 264.7 cells. In addition, mAD-MSC-derived exosomes exhibited similar immunomodulatory effects in activated RAW 264.7 cells. Therefore, our results suggest that mAD-MSCs have an immunomodulatory function through indirect contact.

A Study on Anti-Inflammatory, Antioxidant Activity and Skin Barrier Improvement of Lactobacillus rhamnosus-derived Exosomes (락토바실러스 람노서스 유래 엑소좀의 항염증, 항산화 효능 및 피부 장벽 개선에 관한 연구)

  • Hee-Sik Kim;Jong Woo Hyeon;Min Woo Kim;Ji Yeon Lee;Jun-Hwan Jang;Jun-Tae Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.299-306
    • /
    • 2023
  • In this study, exosomes were isolated by ultrafiltration from Lactobacillus rhamnosus J2K-821 and their various effects for skin were evaluated. Their size and concentration were identified 50 ~ 200 nm and 3.22 × 108 particles/mL, respectively through nanoparticle tracking analysis. In order to verify the inflammatory relief effect of Lactobacillus rhamnosus-derived exosomes (LRDEs), their nitric oxide (NO) production inhibitory ability in RAW 264.7 macrophages induced an inflammatory reaction with lipopolysaccharide (LPS) was confirmed. It was revealed that they inhibited NO production in a concentration-dependent manner. To evaluate the antioxidant activity and skin barrier improvement effect of LRDEs, their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and hyaluronidase inhibitory activity were confirmed. It was also revealed that their activities were increased by concentration-dependent manner. Through these results, It is believed that LRDEs can be used as a effective natural cosmetic ingredient for anti-inflammation, antioxidation and skin barrier improvement.

Circulating Tumor Marker (순환 종양 표지자)

  • Sung Yong Han;Dong Uk Kim
    • Journal of Digestive Cancer Research
    • /
    • v.6 no.2
    • /
    • pp.59-63
    • /
    • 2018
  • Over the past decade, circulating tumor cell have received tremendous attention as new biomarkers and basic research subjects.In recent years, research on circulating tumor DNA, exosomes and microRNAs has also been actively conducted.These circulating tumor markers have the potential to become the basis of precision medicine, such as determining the genome / immune profile, monitoring response and tolerance, and selecting therapeutic agents beyond the early diagnosis and prognosis prediction.In this article, we introduce the diagnostic methods, efficacy, meaning, and applicability of various circulating tumor markers.

  • PDF

Exosomal Protein Profiles as Novel Biomarkers in Weight Gain After Kidney Transplantation: A Pilot Study

  • Cho, Young-Eun;Lee, Hyangkyu;Kim, Hyungsuk;Yun, Sijung;Cashion, Ann
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.2
    • /
    • pp.119-126
    • /
    • 2020
  • Purpose:Weight gain after kidney transplantation is a critical factor that can lead to poor outcomes with cardiovascular complications. Many studies have been conducted to identify predictive markers of future weight changes at the time of transplant. Recently, circulating exosomes and its contents including miRNAs and proteins have attracted attention as potential biomarkers. In this pilot study, we investigated exosomal proteins and weight change after kidney transplant. Methods: Recipients (n = 10) were classified into two groups; weight gainers (n = 5, 9.7 ± 4.4kg) and weight losers (n = 5, -6.4 ± 1.8kg) based on their weight changes at 12-months posttransplant. Based on the exosomal protein profiles obtained by the LC-MS/MS, differentially expressed proteins were identified between the groups. Results: Concentration and the mean size of exosomes significantly increased at 12-months compared to the baseline (p= .009) in the total group. Eleven exosomal proteins were found at the baseline as differentially expressed between the two groups. In the weight gain group, complement proteins including HV169, C3, C4B, and C4A, were significantly upregulated. Conclusion: Our pilot study suggests that exosomal complementary proteins are associated with weight gain after kidney transplantation. Further studies are needed to clarify the role of these exosomal proteins in the underlying mechanisms of weight changes in kidney transplant recipients.

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus (사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구)

  • Seo, Yu-Ri;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.