Browse > Article
http://dx.doi.org/10.15230/SCSK.2021.47.2.171

Skin Barrier Improvement Effect of Exosomal Nanovesicles Derived from Lactic Acid Bacteria  

Wang, Hyesoo (Biosolution Co., Ltd.)
Lee, Kwang-Soo (Biosolution Co., Ltd.)
Kang, Yong-Won (Biosolution Co., Ltd.)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.47, no.2, 2021 , pp. 171-178 More about this Journal
Abstract
In this study, exosomal-like nano-vesicles derived from probiotics were isolated and various physiological activities were evaluated on the skin. This study show that Lactococcus lactis subsp. lactis (LL) are incubated, and then isolated LL derived exosomal nanovesicles (LVs) at the range of 70 ~ 200 nm by high-pressure homogenizer and ultrafiltration. The vesicle numbers were an average of 1.81 × 1011 particles/mL. This study finds out the bacterial nanovesicles' beneficial effect on the skin. Fibrillin (FBN1) gene expression increased by 23% in fibroblast cells. Fibronectin (FN1) and filaggrin (FLG) gene expression increased by 65% and 400% in keratinocytes. We could see that cornified envelope (CE) formation ability was increased by 30% compared to the control group. Furthermore, collagen type I alpha 1 (COL1A1) protein expression increased by 83% compared to the UV-irradiated control group. These results suggest that LVs could help skin barrier improvement and used as an ingredient for cosmetics or pharmaceuticals.
Keywords
probiotics; exosome; nanovesicles; extracellular vesicles; skin barrier;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. J. Johansson, H. Vallhov, T. Holm, U. Gehrmann, A. Andersson, C. Johansson, H. Blom, M. Carroni, J. Lehtio, and A. Scheynius, Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin, Sci. Rep., 8, 9182 (2018).   DOI
2 A. Bolotin, P. Wincker, S. Mauger, O . Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin, The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403, Genome Res., 11(5), 731 (2001).   DOI
3 J. Nam and C. S. Park, Effect of Chrysanthemum zawadskii and Mentha arvensis on skin barrier function via keratinocytes differentiation, 2021 KSBB Spring Meeting & International Symposium, Changwon, 254 (2012).
4 S. H. So, S. K. Lee, E. I. Hwang, B. S. Koo, G. H. Han, and N. M. Kim, Effects of Korean red ginseng and herb extracts mixture (KTNG0345) on procollagen biosynthesis and matrix metalloproteinase-1 activity in human dermal fibroblast, J Ginseng Res., 31(4), 196 (2007).   DOI
5 L. Macia, R. Nanan, E. Hosseini-Beheshti, and G. E. Grau, Host- and microbiota-derived extracellular vesicles, immune function, and disease development, Int J Mol Sci, 21(1), 107 (2019).   DOI
6 H. Kimoto-Nira, R. Aoki, K. Sasaki, C. Suzuki, and K. Mizumachi, Oral intake of heat-killed cells of Lactococcus lactis strain H61 promotes skin health in women, J. Nutr. Sci., 1, e18 (2012).   DOI
7 F. Samad, K. Yamamoto, M. Pandey, and D. J. Loskutoff, Elevated expression of transforming growth factor-β in adipose tissue from obese mice, Mol. Med., 3(1), 37 (1997).   DOI
8 A. A. Kadhim, J. A. S. Salman, and A. Haider, Antibacterial and anti virulence factors activity of ZnO nanoparticles biosynthesized by Lactococcus lactis ssp. lactis, Indian J. Public Health Res. Dev., 9(12), 1228 (2018).   DOI
9 K. W. Knox, M. Vesk, and E. Work, Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli, J Bacteriol, 92(4), 1206 (1966).   DOI
10 M. H. Kim, S. J. Choi, H. I. Choi, J. P. Choi, H. K. Park, E. K. Kim, M. J. Kim, B. S. Moon, T. K. Min, M. Rho, Y. J. Cho, S. Yang, Y. K. Kim, Y. Y. Kim, and B. Y. Pyun, Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles, Allergy Asthma Immunol Res., 10(5), 516 (2018).   DOI
11 G. Q. Zhang, H. J. Hu, C. Y. Liu, Q. Zhang, S. Shakya, and Z. Y. Li, Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials, Medicine (Baltimore), 95(8), e2562 (2016).   DOI
12 E. F. Bernstein, Y. Q. Chen, K. Tamai, K. J. Shepley, K. S. Resnik, H. Zhang, R. Tuan, A. Mauviel, and J. Uitto, Enhanced elastin and fibrillin gene expression in chronically photodamaged skin, J Invest Dermatol, 103(2), 182 (1994).   DOI
13 E. Y. Lee, D. Y. Choi, D. K. Kim, J. W. Kim, J. O. Park, S. Kim, S. H. Kim, D. M. Desiderio, Y. K. Kim, K. P. Kim, and Y. S. Gho, Grampositive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics, 9(24), 5425 (2009).   DOI
14 J. Choi, Y. K. Kim, and P. L. Han, Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice, Exp. Neurobiol., 28(2), 158 (2019).   DOI
15 J. H. Kim, E. J. Jeun, C. P. Hong, S. H. Kim, M. S. Jang, E. J. Lee, S. J. Moon, C. H. Yun, S. H. Im, S. G. Jeong, B. Y. Park, K. T. Kim, J. Y. Seob, Y. K. Kim, S. J. Oh, J. S. Ham, B. G. Yang, and M. H. Jang, Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression, J. Allergy Clin. Immunol, 137(2), 507 (2016).   DOI
16 E. Behzadi, H. M. Hosseini, and A. A. I. Fooladi, The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells, Microb. Pathog., 110, 1 (2017).   DOI
17 L. Y. Sakai, D. R. Keene, and E. Engvall, Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils, J. Cell Biol., 103(6), 2499 (1986).   DOI
18 M. B. Johnson, B. Pang, D. J. Gardner, S. Niknam-Benia, V. Soundarajan, A. Bramos, D. P. Perrault, K. Banks, G. K. Lee, R. Y. Baker, G. H. Kim, S. Lee, Y. Chai, M. Chen, W. Li, L. Kaong, Y. K. Hong, and A. K. Wong, Topical fibronectin improves wound healing of irradiated skin, Sci Rep, 7(1), 1 (2017).   DOI
19 D. M. Lilly and R. H. Stillwell, Probiotics: growth-promoting factors produced by microorganisms, Science, 147(3659), 747 (1965).   DOI
20 M. G. Gareau, P. M. Sherman, and W. A. Walker, Probiotics and the gut microbiota in intestinal health and disease, Nat. Rev. Gastroenterol. Hepatol., 7(9), 503 (2010).   DOI
21 A. M. Watts, N. P. West, P. K. Smith, A. W. Cripps, and A. J. Cox, Probiotics and allergic rhinitis: a Simon two-stage design to determine effectiveness, J Altern Complement Med, 22(12), 1007 (2016).   DOI
22 D. S. Choi, J. S. Yang, E. J. Choi, S. C. Jang, S. Park, O . Y. Kim, D. Hwang, K. P. Kim, Y. K. Kim, S. Kim, and Y. S. Gho, The protein interaction network of extracellular vesicles derived from human colorectal cancer cells, J. Proteome Res., 11(2), 1144 (2012).   DOI
23 M. He and B. Shi, Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics, Cell Biosci., 7, 54 (2017).   DOI
24 G. Bertuccelli, N. Zerbinati, M. Marcellino, N. S. Nanda Kumar, F. He, V. Tsepakolenko, J. Cervi, A. Lorenzetti, and F. Marotta, Effect of a quality-controlled fermented nutraceutical on skin aging markers: an antioxidant-control, double-blind study, Exp. Ther. Med., 11(3), 909 (2016).   DOI
25 R. Laridi, E. E. Kheadr, R. O. Benech, J. C. Vuillemard, C. Lacroix, and I. Fliss, Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation, Int. Dairy J., 13(4), 325 (2003).   DOI
26 A. Bobrie, M. Colombo, G. Raposo, and C. Thery, Exosome secretion: molecular mechanisms and roles in immune responses, Traffic, 12(12), 1659 (2011).   DOI
27 S. Kezic and I. Jakasa, Filaggrin and skin barrier function, Curr Probl Dermatol., 49, 1 (2016).   DOI
28 P. S. Malheiros, I. M. Cuccovia, and B. D. G. M. Franco, Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a, Food Control, 63, 158 (2016).   DOI
29 A. P. M. Serezani, G. Bozdogan, S. Sehra, D. Walsh, P. Krishnamurthy, E. A. S. Potchanant, G. Nalepa, S. Goenka, M. J. Turner, D. F. Spandau, and M. H. Kaplan, IL-4 impairs wound healing potential in the skin by repressing fibronectin expression, J. Allergy Clin. Immunol., 139(1), 142 (2017).   DOI
30 A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. I. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell Sci., 122(9), 1285 (2009).   DOI
31 A. S. Wang and O. Dreesen, Biomarkers of cellular senescence and skin aging, Front. genet., 9, 247 (2018).   DOI
32 J. Y. Ryu, S. J. Rhie, K. H. Lim, Y. E. Choi, H. S. Han, H. O. Yang, and E. J. Na, Inhibitory effects of prunin on photo-aging in human keratinocytes (HaCaT) damaged by UVB radiation, Asian J Beauty Cosmetol, 17(1), 139 (2019).   DOI
33 E. J. Na, H. O. Yang, Y. E. Choi, H. S. Han, S. J. Rhie, and J. Y. Ryu, Anti-inflammatory and collagen production effect of syringic acid on human keratinocyte (HaCaT) damaged by ultraviolet B, Asian J Beauty Cosmetol, 16(4), 523 (2018).   DOI
34 A. C. Steven and P. M. Steinert, Protein composition of cornified cell envelopes of epidermal keratinocytes, J. Cell Sci., 107(Pt2), 693 (1994).
35 W. S. Choi, H. S. Kwon, H. W. Lim, R. W. No, H. Y. Lee, Whitening effects of Lactobacillus rhamnosus associated with its antioxidative activities, Korean J. Microbiol. Biotechnol., 41(2), 183 (2013).   DOI
36 S. Puebla-Barragan and G. Reid, Probiotics in cosmetic and personal care products: trends and challenges, Molecules, 26(5), 1249 (2021).   DOI