DOI QR코드

DOI QR Code

Skin Barrier Improvement Effect of Exosomal Nanovesicles Derived from Lactic Acid Bacteria

유산균 유래 엑소좀 유사 나노베지클의 피부 장벽 개선 효과

  • Received : 2021.04.29
  • Accepted : 2021.06.13
  • Published : 2021.06.30

Abstract

In this study, exosomal-like nano-vesicles derived from probiotics were isolated and various physiological activities were evaluated on the skin. This study show that Lactococcus lactis subsp. lactis (LL) are incubated, and then isolated LL derived exosomal nanovesicles (LVs) at the range of 70 ~ 200 nm by high-pressure homogenizer and ultrafiltration. The vesicle numbers were an average of 1.81 × 1011 particles/mL. This study finds out the bacterial nanovesicles' beneficial effect on the skin. Fibrillin (FBN1) gene expression increased by 23% in fibroblast cells. Fibronectin (FN1) and filaggrin (FLG) gene expression increased by 65% and 400% in keratinocytes. We could see that cornified envelope (CE) formation ability was increased by 30% compared to the control group. Furthermore, collagen type I alpha 1 (COL1A1) protein expression increased by 83% compared to the UV-irradiated control group. These results suggest that LVs could help skin barrier improvement and used as an ingredient for cosmetics or pharmaceuticals.

본 연구에서는 프로바이오틱스 유래 엑소좀 유사 나노베지클을 분리하고, 피부에 대한 여러 가지 생리활성을 평가했다. 프로바이오틱스의 한 종인 Lactococcus lactis subsp. lactis (LL)를 배양하고 고압균질기와 한외여과를 통해 70 ~ 200 nm 크기를 갖는 LL 유래 엑소좀 유사 나노베지클(LVs)을 분리했다. 나노입자추적분석 결과 1.81 × 1011 particles/mL로 나타났다. LVs를 섬유아세포와 피부각질세포에 처리하여 피부 주름과 장벽 개선과 관련된 효능을 확인했다. 우선 섬유아세포에서 fibrillin (FBN1) 유전자 발현량이 23%, 피부각질세포에서 fibronectin (FN1)과 filaggrin (FGN) 유전자 발현량이 각각 65%, 400% 증가했다. 그리고 각질형성능은 대조군 대비 30% 증가함을 확인할 수 있었다. 또한, UV 조사한 피부각질세포에 LVs를 처리했을 때 collagen type I alpha 1 (COL1A1)이 대조군 대비 약 83% 증가하는 결과를 보여주었다. 이로써 프로바이오틱스 유래 엑소좀 유사 나노베지클은 장벽 개선과 관련하여 화장품 및 의약품 소재로 이용할 수 있음을 확인했다.

Keywords

References

  1. D. M. Lilly and R. H. Stillwell, Probiotics: growth-promoting factors produced by microorganisms, Science, 147(3659), 747 (1965). https://doi.org/10.1126/science.147.3659.747
  2. M. G. Gareau, P. M. Sherman, and W. A. Walker, Probiotics and the gut microbiota in intestinal health and disease, Nat. Rev. Gastroenterol. Hepatol., 7(9), 503 (2010). https://doi.org/10.1038/nrgastro.2010.117
  3. G. Q. Zhang, H. J. Hu, C. Y. Liu, Q. Zhang, S. Shakya, and Z. Y. Li, Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials, Medicine (Baltimore), 95(8), e2562 (2016). https://doi.org/10.1097/md.0000000000002562
  4. A. M. Watts, N. P. West, P. K. Smith, A. W. Cripps, and A. J. Cox, Probiotics and allergic rhinitis: a Simon two-stage design to determine effectiveness, J Altern Complement Med, 22(12), 1007 (2016). https://doi.org/10.1089/acm.2016.0115
  5. M. He and B. Shi, Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics, Cell Biosci., 7, 54 (2017). https://doi.org/10.1186/s13578-017-0183-1
  6. A. Bolotin, P. Wincker, S. Mauger, O . Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin, The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403, Genome Res., 11(5), 731 (2001). https://doi.org/10.1101/gr.169701
  7. H. Kimoto-Nira, R. Aoki, K. Sasaki, C. Suzuki, and K. Mizumachi, Oral intake of heat-killed cells of Lactococcus lactis strain H61 promotes skin health in women, J. Nutr. Sci., 1, e18 (2012). https://doi.org/10.1017/jns.2012.22
  8. A. A. Kadhim, J. A. S. Salman, and A. Haider, Antibacterial and anti virulence factors activity of ZnO nanoparticles biosynthesized by Lactococcus lactis ssp. lactis, Indian J. Public Health Res. Dev., 9(12), 1228 (2018). https://doi.org/10.5958/0976-5506.2018.02018.1
  9. J. Nam and C. S. Park, Effect of Chrysanthemum zawadskii and Mentha arvensis on skin barrier function via keratinocytes differentiation, 2021 KSBB Spring Meeting & International Symposium, Changwon, 254 (2012).
  10. G. Bertuccelli, N. Zerbinati, M. Marcellino, N. S. Nanda Kumar, F. He, V. Tsepakolenko, J. Cervi, A. Lorenzetti, and F. Marotta, Effect of a quality-controlled fermented nutraceutical on skin aging markers: an antioxidant-control, double-blind study, Exp. Ther. Med., 11(3), 909 (2016). https://doi.org/10.3892/etm.2016.3011
  11. S. H. So, S. K. Lee, E. I. Hwang, B. S. Koo, G. H. Han, and N. M. Kim, Effects of Korean red ginseng and herb extracts mixture (KTNG0345) on procollagen biosynthesis and matrix metalloproteinase-1 activity in human dermal fibroblast, J Ginseng Res., 31(4), 196 (2007). https://doi.org/10.5142/JGR.2007.31.4.196
  12. P. S. Malheiros, I. M. Cuccovia, and B. D. G. M. Franco, Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a, Food Control, 63, 158 (2016). https://doi.org/10.1016/j.foodcont.2015.11.037
  13. R. Laridi, E. E. Kheadr, R. O. Benech, J. C. Vuillemard, C. Lacroix, and I. Fliss, Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation, Int. Dairy J., 13(4), 325 (2003). https://doi.org/10.1016/S0958-6946(02)00194-2
  14. H. J. Johansson, H. Vallhov, T. Holm, U. Gehrmann, A. Andersson, C. Johansson, H. Blom, M. Carroni, J. Lehtio, and A. Scheynius, Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin, Sci. Rep., 8, 9182 (2018). https://doi.org/10.1038/s41598-018-27451-9
  15. L. Macia, R. Nanan, E. Hosseini-Beheshti, and G. E. Grau, Host- and microbiota-derived extracellular vesicles, immune function, and disease development, Int J Mol Sci, 21(1), 107 (2019). https://doi.org/10.3390/ijms21010107
  16. D. S. Choi, J. S. Yang, E. J. Choi, S. C. Jang, S. Park, O . Y. Kim, D. Hwang, K. P. Kim, Y. K. Kim, S. Kim, and Y. S. Gho, The protein interaction network of extracellular vesicles derived from human colorectal cancer cells, J. Proteome Res., 11(2), 1144 (2012). https://doi.org/10.1021/pr200842h
  17. A. Bobrie, M. Colombo, G. Raposo, and C. Thery, Exosome secretion: molecular mechanisms and roles in immune responses, Traffic, 12(12), 1659 (2011). https://doi.org/10.1111/j.1600-0854.2011.01225.x
  18. K. W. Knox, M. Vesk, and E. Work, Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli, J Bacteriol, 92(4), 1206 (1966). https://doi.org/10.1128/jb.92.4.1206-1217.1966
  19. E. Y. Lee, D. Y. Choi, D. K. Kim, J. W. Kim, J. O. Park, S. Kim, S. H. Kim, D. M. Desiderio, Y. K. Kim, K. P. Kim, and Y. S. Gho, Grampositive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics, 9(24), 5425 (2009). https://doi.org/10.1002/pmic.200900338
  20. J. Choi, Y. K. Kim, and P. L. Han, Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice, Exp. Neurobiol., 28(2), 158 (2019). https://doi.org/10.5607/en.2019.28.2.158
  21. M. H. Kim, S. J. Choi, H. I. Choi, J. P. Choi, H. K. Park, E. K. Kim, M. J. Kim, B. S. Moon, T. K. Min, M. Rho, Y. J. Cho, S. Yang, Y. K. Kim, Y. Y. Kim, and B. Y. Pyun, Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles, Allergy Asthma Immunol Res., 10(5), 516 (2018). https://doi.org/10.4168/aair.2018.10.5.516
  22. J. H. Kim, E. J. Jeun, C. P. Hong, S. H. Kim, M. S. Jang, E. J. Lee, S. J. Moon, C. H. Yun, S. H. Im, S. G. Jeong, B. Y. Park, K. T. Kim, J. Y. Seob, Y. K. Kim, S. J. Oh, J. S. Ham, B. G. Yang, and M. H. Jang, Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression, J. Allergy Clin. Immunol, 137(2), 507 (2016). https://doi.org/10.1016/j.jaci.2015.08.016
  23. E. Behzadi, H. M. Hosseini, and A. A. I. Fooladi, The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells, Microb. Pathog., 110, 1 (2017). https://doi.org/10.1016/j.micpath.2017.06.016
  24. E. F. Bernstein, Y. Q. Chen, K. Tamai, K. J. Shepley, K. S. Resnik, H. Zhang, R. Tuan, A. Mauviel, and J. Uitto, Enhanced elastin and fibrillin gene expression in chronically photodamaged skin, J Invest Dermatol, 103(2), 182 (1994). https://doi.org/10.1111/1523-1747.ep12392693
  25. L. Y. Sakai, D. R. Keene, and E. Engvall, Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils, J. Cell Biol., 103(6), 2499 (1986). https://doi.org/10.1083/jcb.103.6.2499
  26. M. B. Johnson, B. Pang, D. J. Gardner, S. Niknam-Benia, V. Soundarajan, A. Bramos, D. P. Perrault, K. Banks, G. K. Lee, R. Y. Baker, G. H. Kim, S. Lee, Y. Chai, M. Chen, W. Li, L. Kaong, Y. K. Hong, and A. K. Wong, Topical fibronectin improves wound healing of irradiated skin, Sci Rep, 7(1), 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  27. F. Samad, K. Yamamoto, M. Pandey, and D. J. Loskutoff, Elevated expression of transforming growth factor-β in adipose tissue from obese mice, Mol. Med., 3(1), 37 (1997). https://doi.org/10.1007/bf03401666
  28. A. P. M. Serezani, G. Bozdogan, S. Sehra, D. Walsh, P. Krishnamurthy, E. A. S. Potchanant, G. Nalepa, S. Goenka, M. J. Turner, D. F. Spandau, and M. H. Kaplan, IL-4 impairs wound healing potential in the skin by repressing fibronectin expression, J. Allergy Clin. Immunol., 139(1), 142 (2017). https://doi.org/10.1016/j.jaci.2016.07.012
  29. A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. I. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell Sci., 122(9), 1285 (2009). https://doi.org/10.1242/jcs.033969
  30. S. Kezic and I. Jakasa, Filaggrin and skin barrier function, Curr Probl Dermatol., 49, 1 (2016). https://doi.org/10.1159/000441539
  31. A. S. Wang and O. Dreesen, Biomarkers of cellular senescence and skin aging, Front. genet., 9, 247 (2018). https://doi.org/10.3389/fgene.2018.00247
  32. J. Y. Ryu, S. J. Rhie, K. H. Lim, Y. E. Choi, H. S. Han, H. O. Yang, and E. J. Na, Inhibitory effects of prunin on photo-aging in human keratinocytes (HaCaT) damaged by UVB radiation, Asian J Beauty Cosmetol, 17(1), 139 (2019). https://doi.org/10.20402/ajbc.2019.0275
  33. E. J. Na, H. O. Yang, Y. E. Choi, H. S. Han, S. J. Rhie, and J. Y. Ryu, Anti-inflammatory and collagen production effect of syringic acid on human keratinocyte (HaCaT) damaged by ultraviolet B, Asian J Beauty Cosmetol, 16(4), 523 (2018). https://doi.org/10.20402/ajbc.2018.0245
  34. A. C. Steven and P. M. Steinert, Protein composition of cornified cell envelopes of epidermal keratinocytes, J. Cell Sci., 107(Pt2), 693 (1994).
  35. W. S. Choi, H. S. Kwon, H. W. Lim, R. W. No, H. Y. Lee, Whitening effects of Lactobacillus rhamnosus associated with its antioxidative activities, Korean J. Microbiol. Biotechnol., 41(2), 183 (2013). https://doi.org/10.4014/kjmb.1302.02006
  36. S. Puebla-Barragan and G. Reid, Probiotics in cosmetic and personal care products: trends and challenges, Molecules, 26(5), 1249 (2021). https://doi.org/10.3390/molecules26051249