References
- D. M. Lilly and R. H. Stillwell, Probiotics: growth-promoting factors produced by microorganisms, Science, 147(3659), 747 (1965). https://doi.org/10.1126/science.147.3659.747
- M. G. Gareau, P. M. Sherman, and W. A. Walker, Probiotics and the gut microbiota in intestinal health and disease, Nat. Rev. Gastroenterol. Hepatol., 7(9), 503 (2010). https://doi.org/10.1038/nrgastro.2010.117
- G. Q. Zhang, H. J. Hu, C. Y. Liu, Q. Zhang, S. Shakya, and Z. Y. Li, Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials, Medicine (Baltimore), 95(8), e2562 (2016). https://doi.org/10.1097/md.0000000000002562
- A. M. Watts, N. P. West, P. K. Smith, A. W. Cripps, and A. J. Cox, Probiotics and allergic rhinitis: a Simon two-stage design to determine effectiveness, J Altern Complement Med, 22(12), 1007 (2016). https://doi.org/10.1089/acm.2016.0115
- M. He and B. Shi, Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics, Cell Biosci., 7, 54 (2017). https://doi.org/10.1186/s13578-017-0183-1
- A. Bolotin, P. Wincker, S. Mauger, O . Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin, The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403, Genome Res., 11(5), 731 (2001). https://doi.org/10.1101/gr.169701
- H. Kimoto-Nira, R. Aoki, K. Sasaki, C. Suzuki, and K. Mizumachi, Oral intake of heat-killed cells of Lactococcus lactis strain H61 promotes skin health in women, J. Nutr. Sci., 1, e18 (2012). https://doi.org/10.1017/jns.2012.22
- A. A. Kadhim, J. A. S. Salman, and A. Haider, Antibacterial and anti virulence factors activity of ZnO nanoparticles biosynthesized by Lactococcus lactis ssp. lactis, Indian J. Public Health Res. Dev., 9(12), 1228 (2018). https://doi.org/10.5958/0976-5506.2018.02018.1
- J. Nam and C. S. Park, Effect of Chrysanthemum zawadskii and Mentha arvensis on skin barrier function via keratinocytes differentiation, 2021 KSBB Spring Meeting & International Symposium, Changwon, 254 (2012).
- G. Bertuccelli, N. Zerbinati, M. Marcellino, N. S. Nanda Kumar, F. He, V. Tsepakolenko, J. Cervi, A. Lorenzetti, and F. Marotta, Effect of a quality-controlled fermented nutraceutical on skin aging markers: an antioxidant-control, double-blind study, Exp. Ther. Med., 11(3), 909 (2016). https://doi.org/10.3892/etm.2016.3011
- S. H. So, S. K. Lee, E. I. Hwang, B. S. Koo, G. H. Han, and N. M. Kim, Effects of Korean red ginseng and herb extracts mixture (KTNG0345) on procollagen biosynthesis and matrix metalloproteinase-1 activity in human dermal fibroblast, J Ginseng Res., 31(4), 196 (2007). https://doi.org/10.5142/JGR.2007.31.4.196
- P. S. Malheiros, I. M. Cuccovia, and B. D. G. M. Franco, Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a, Food Control, 63, 158 (2016). https://doi.org/10.1016/j.foodcont.2015.11.037
- R. Laridi, E. E. Kheadr, R. O. Benech, J. C. Vuillemard, C. Lacroix, and I. Fliss, Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation, Int. Dairy J., 13(4), 325 (2003). https://doi.org/10.1016/S0958-6946(02)00194-2
- H. J. Johansson, H. Vallhov, T. Holm, U. Gehrmann, A. Andersson, C. Johansson, H. Blom, M. Carroni, J. Lehtio, and A. Scheynius, Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin, Sci. Rep., 8, 9182 (2018). https://doi.org/10.1038/s41598-018-27451-9
- L. Macia, R. Nanan, E. Hosseini-Beheshti, and G. E. Grau, Host- and microbiota-derived extracellular vesicles, immune function, and disease development, Int J Mol Sci, 21(1), 107 (2019). https://doi.org/10.3390/ijms21010107
- D. S. Choi, J. S. Yang, E. J. Choi, S. C. Jang, S. Park, O . Y. Kim, D. Hwang, K. P. Kim, Y. K. Kim, S. Kim, and Y. S. Gho, The protein interaction network of extracellular vesicles derived from human colorectal cancer cells, J. Proteome Res., 11(2), 1144 (2012). https://doi.org/10.1021/pr200842h
- A. Bobrie, M. Colombo, G. Raposo, and C. Thery, Exosome secretion: molecular mechanisms and roles in immune responses, Traffic, 12(12), 1659 (2011). https://doi.org/10.1111/j.1600-0854.2011.01225.x
- K. W. Knox, M. Vesk, and E. Work, Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli, J Bacteriol, 92(4), 1206 (1966). https://doi.org/10.1128/jb.92.4.1206-1217.1966
- E. Y. Lee, D. Y. Choi, D. K. Kim, J. W. Kim, J. O. Park, S. Kim, S. H. Kim, D. M. Desiderio, Y. K. Kim, K. P. Kim, and Y. S. Gho, Grampositive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics, 9(24), 5425 (2009). https://doi.org/10.1002/pmic.200900338
- J. Choi, Y. K. Kim, and P. L. Han, Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice, Exp. Neurobiol., 28(2), 158 (2019). https://doi.org/10.5607/en.2019.28.2.158
- M. H. Kim, S. J. Choi, H. I. Choi, J. P. Choi, H. K. Park, E. K. Kim, M. J. Kim, B. S. Moon, T. K. Min, M. Rho, Y. J. Cho, S. Yang, Y. K. Kim, Y. Y. Kim, and B. Y. Pyun, Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles, Allergy Asthma Immunol Res., 10(5), 516 (2018). https://doi.org/10.4168/aair.2018.10.5.516
- J. H. Kim, E. J. Jeun, C. P. Hong, S. H. Kim, M. S. Jang, E. J. Lee, S. J. Moon, C. H. Yun, S. H. Im, S. G. Jeong, B. Y. Park, K. T. Kim, J. Y. Seob, Y. K. Kim, S. J. Oh, J. S. Ham, B. G. Yang, and M. H. Jang, Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression, J. Allergy Clin. Immunol, 137(2), 507 (2016). https://doi.org/10.1016/j.jaci.2015.08.016
- E. Behzadi, H. M. Hosseini, and A. A. I. Fooladi, The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells, Microb. Pathog., 110, 1 (2017). https://doi.org/10.1016/j.micpath.2017.06.016
- E. F. Bernstein, Y. Q. Chen, K. Tamai, K. J. Shepley, K. S. Resnik, H. Zhang, R. Tuan, A. Mauviel, and J. Uitto, Enhanced elastin and fibrillin gene expression in chronically photodamaged skin, J Invest Dermatol, 103(2), 182 (1994). https://doi.org/10.1111/1523-1747.ep12392693
- L. Y. Sakai, D. R. Keene, and E. Engvall, Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils, J. Cell Biol., 103(6), 2499 (1986). https://doi.org/10.1083/jcb.103.6.2499
- M. B. Johnson, B. Pang, D. J. Gardner, S. Niknam-Benia, V. Soundarajan, A. Bramos, D. P. Perrault, K. Banks, G. K. Lee, R. Y. Baker, G. H. Kim, S. Lee, Y. Chai, M. Chen, W. Li, L. Kaong, Y. K. Hong, and A. K. Wong, Topical fibronectin improves wound healing of irradiated skin, Sci Rep, 7(1), 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
- F. Samad, K. Yamamoto, M. Pandey, and D. J. Loskutoff, Elevated expression of transforming growth factor-β in adipose tissue from obese mice, Mol. Med., 3(1), 37 (1997). https://doi.org/10.1007/bf03401666
- A. P. M. Serezani, G. Bozdogan, S. Sehra, D. Walsh, P. Krishnamurthy, E. A. S. Potchanant, G. Nalepa, S. Goenka, M. J. Turner, D. F. Spandau, and M. H. Kaplan, IL-4 impairs wound healing potential in the skin by repressing fibronectin expression, J. Allergy Clin. Immunol., 139(1), 142 (2017). https://doi.org/10.1016/j.jaci.2016.07.012
- A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. I. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell Sci., 122(9), 1285 (2009). https://doi.org/10.1242/jcs.033969
- S. Kezic and I. Jakasa, Filaggrin and skin barrier function, Curr Probl Dermatol., 49, 1 (2016). https://doi.org/10.1159/000441539
- A. S. Wang and O. Dreesen, Biomarkers of cellular senescence and skin aging, Front. genet., 9, 247 (2018). https://doi.org/10.3389/fgene.2018.00247
- J. Y. Ryu, S. J. Rhie, K. H. Lim, Y. E. Choi, H. S. Han, H. O. Yang, and E. J. Na, Inhibitory effects of prunin on photo-aging in human keratinocytes (HaCaT) damaged by UVB radiation, Asian J Beauty Cosmetol, 17(1), 139 (2019). https://doi.org/10.20402/ajbc.2019.0275
- E. J. Na, H. O. Yang, Y. E. Choi, H. S. Han, S. J. Rhie, and J. Y. Ryu, Anti-inflammatory and collagen production effect of syringic acid on human keratinocyte (HaCaT) damaged by ultraviolet B, Asian J Beauty Cosmetol, 16(4), 523 (2018). https://doi.org/10.20402/ajbc.2018.0245
- A. C. Steven and P. M. Steinert, Protein composition of cornified cell envelopes of epidermal keratinocytes, J. Cell Sci., 107(Pt2), 693 (1994).
- W. S. Choi, H. S. Kwon, H. W. Lim, R. W. No, H. Y. Lee, Whitening effects of Lactobacillus rhamnosus associated with its antioxidative activities, Korean J. Microbiol. Biotechnol., 41(2), 183 (2013). https://doi.org/10.4014/kjmb.1302.02006
- S. Puebla-Barragan and G. Reid, Probiotics in cosmetic and personal care products: trends and challenges, Molecules, 26(5), 1249 (2021). https://doi.org/10.3390/molecules26051249