DOI QR코드

DOI QR Code

Effect of Keratinocyte Derived Exosome on Proliferation and Migration on Human Skin Keratinocyte

각질형성세포 유래 엑소좀이 피부각질형성세포의 증식과 이주에 미치는 영향

  • Kim, Do Yoon (Department of Cosmetic Science, College of Life and Health Science, Hoseo University) ;
  • Yu, Ho Jin (Department of Cosmetic Science, College of Life and Health Science, Hoseo University) ;
  • Hwang, Dae Il (Department of Cosmetic Science, College of Life and Health Science, Hoseo University) ;
  • Jang, Sang Hee (Department of Food and Nutrion, Gumi University) ;
  • Lee, Hwan Myung (Department of Cosmetic Science, College of Life and Health Science, Hoseo University)
  • Received : 2016.10.11
  • Accepted : 2016.11.29
  • Published : 2016.12.30

Abstract

Exosome, a small vesicle secreted from cells, has diverse functions depending on cell origins and tissue types and plays a important role in cell viability and intercellular communication. Recently, many researchers have demonstrated the use of exosomes for the treatment of cancers and immune diseases, and the development of diagnostic biomarker. However, the secretion mechanism of exosome from skin cell and its physiological functions in skin remain unclear. Thus, this study aimed to explore whether keratinocyte-derived exosome affects proliferation and migration in HaCaTs. Exosomes were isolated from HaCaTs by ExoQuick-TC and then boiled or unbolied. Boiled and unboiled exosome induced proliferation in HaCaTs in a dose-dependant manner ($0.1{\sim}20{\mu}g/mL$), respectively. Boiled and unboiled exosome at concentration of $20{\mu}g/mL$ increased proliferation level in HaCaTs by $186.96{\pm}3.87%$ and $193.48{\pm}10.48%$ compared with control group. Unboiled exosome stimulated migration in HaCaTs in a dose-dependent manner ($0.1{\sim}20{\mu}g/mL$), which reached a maxium at concentration of $20{\mu}g/mL$ ($179.39{\pm}4.89%$ of control), but boiled exosome did not affect HaCaT migration. In addition, unboiled exosome ($0.1{\sim}20{\mu}g/mL$) dose-dependently stimulated sprout outgrowth in HaCats. These results demonstrate that in exosome from HaCaTs, heat-stable components such as lipid may induce HaCaT proliferation and heat-unstable components such as protein may stimulate migration and sprout outgrowth in HaCaTs, thereby leading to reepithelialization and skin-wound healing activities. It is concluded that exosomes from HaCaTs may be used as cosmetic materials.

엑소좀은 세포에서 분비되는 작은 소낭체로서, 기원세포와 조직에 따라 다양한 기능을 수행하며, 세포생존 및 세포 간 커뮤니케이션에 중요한 역할을 한다. 최근 엑소좀을 활용하여 종양연구, 면역질환 개선, 질병진단 bio-marker 개발 등 다양한 분야에서 연구가 진행되고 있으나, 피부세포에서 분비기전 및 피부 생리적 기능에 대한 연구는 미흡한 실정이다. 따라서 본 연구에서 인체피부 유래 각질형성세포(HaCaT)로부터 분리된 엑소좀이 피부각질형성세포의 증식과 이주에 미치는 영향을 확인하고자 하였다. HaCaT으로부터 ExoQuick-TC를 활용하여 엑소좀을 분리하고, 열처리 엑소좀(boiled exosome)과 무처리 엑소좀(unboiled exosome)으로 구분하였다. HaCaT 유래 엑소좀은 농도 의존적으로($0.1{\sim}20{\mu}g/mL$) HaCaT의 증식을 유도하였으며, $20{\mu}g/mL$에서 대조군(control)에 비해 각각 $186.96{\pm}3.87%$(열처리) 또는 $193.48{\pm}10.48%$(무처리)의 증식 유도활성을 나타내었다. 또한 HaCaT 유래 무처리 엑소좀은 농도 의존적인($0.1{\sim}20{\mu}g/mL$) HaCaT의 이주활성을 나타내었고, $20{\mu}g/mL$에서 대조군에 비해 $179.39{\pm}4.89%$의 이주를 유도하였다. 그러나 열처리 엑소좀은 이주 유도활성을 나타내지 않았다. 뿐만 아니라 무처리 HaCaT 유래 엑소좀은 collagen sprout outgrowth를 농도 의존적으로 유도함을 확인하였다. 이러한 결과를 통해서 HaCaT 유래 엑소좀은 지질 및 열에 안정한 물질이 세포의 증식을 유도하고, 단백질 또는 열에 불안정한 물질이 세포의 이동 및 sprout out growth 활성에 관여하는 것으로 확인되었다. 따라서 피부각질형성세포 유래 엑소좀은 피부의 재상피화 및 상처치유 등의 활성을 나타낼 수 있으며, 향후 화장품소재로서 응용 가능성이 확인되었다.

Keywords

References

  1. Y. H. Soung, T. Nguyen, H. Cao, J. Lee, and J. Chung, Emerging roles of exosomes in cancer invasion and metastasis, BMB Rep., 49(1), 18 (2016). https://doi.org/10.5483/BMBRep.2016.49.1.239
  2. H. M. Lee, E. J. Choi, J. H. Kim, T. D. Kim, Y. K. Kim, C. Kang, and Y. S. Gho, A membranous form of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells, Biochem. Biophys. Res. Commun., 397(2), 251 (2010). https://doi.org/10.1016/j.bbrc.2010.05.094
  3. K. Denzer, M. J. Kleijmeer, H. F. Heijnen, W. Stoorvogel, and H. J. Geuze, Exosome: from internal vesicle of the multivesicular body to intercellular signaling device, J. Cell Sci., 113(19), 3365 (2000).
  4. M. Record, K. Carayon, M. Poirot, and S. Silvente-Poirot, Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1874(1), 108 (2014).
  5. J. S. Schorey, S. Bhatnagar, Exosome function: from tumor immunology to pathogen biology, Traffic, 9(6), 871 (2008). https://doi.org/10.1111/j.1600-0854.2008.00734.x
  6. A. Bobrie, M. Colombo, G. Raposo, and C. Thery, Exosome secretion: molecular mechanisms and roles in immune responses, Traffic, 12(12), 1659 (2011). https://doi.org/10.1111/j.1600-0854.2011.01225.x
  7. C. Thery, Exosomes: secreted vesicles and intercellular communications, F1000 Biol. Rep., 3(15), 1 (2011).
  8. G. Muller, Microvesicles/exosomes as potential novel biomarkers of metabolic diseases, Diabetes Metab. Syndr. Obes., 2012(5), 247 (2012).
  9. B. Zhang, M. Wang, A. Gong, X. Zhang, X. Wu, Y. Zhu, H. Shi, L. Wu, W. Zhu, H. Qian, and W. Xu, HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing, Stem Cells, 33(7), 2158 (2015). https://doi.org/10.1002/stem.1771
  10. A. Lo Cicero, C. Delevoye, F. Gilles-Marsens, D. Loew, F. Dingli, C. Guere, N. Andre, K. Vie, G. van. Niel, and G. Raposo, Exosomes released by keratinocytes modulate melanocyte pigmentation, Nat. Commun., 24(6), 7506 (2015).
  11. S. Gibbs, C. Backendorf, and M. Ponec, Regulation of keratinocyte proliferation and differentiation by all-trans-retinoic acid, 9-cis-retinoic acid and 1, 25-dihydroxy vitamin D3, Arch. Dermatol. Res., 288(12), 729 (1996). https://doi.org/10.1007/BF02505289
  12. M. Xue, P. Thompson, I. Kelso, and C. Jackson, Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes, Exp. Cell Res., 299(1), 119 (2004). https://doi.org/10.1016/j.yexcr.2004.05.015
  13. I. Haase, R. Evans, R. Pofahl, and F. M. Watt, Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1-and EGF-dependent signalling pathways, J. Cell Sci., 116(15), 3227 (2003). https://doi.org/10.1242/jcs.00610
  14. E. A. O'Toole, Extracellular matrix and keratinocyte migration, Clin. Exp. Dermatol., 26(6), 525 (2001). https://doi.org/10.1046/j.1365-2230.2001.00891.x
  15. T. L. Tuan, L. C. Keller, D. Sun, M. E. Nimni, and D. Cheung, Dermal fibroblasts activate keratinocyte outgrowth on collagen gels, J. Cell Sci., 107(8), 2285 (1994).
  16. M. S. Yoon, K. J. Won, D. Y. Kim, D. I. Hwang, S. W. Yoon, B. Kim, and H. M. Lee, Skin regeneration effect and chemical composition of essential oil from Artemisia Montana, Nat. Prod. Commun., 9(11), 1619 (2014).
  17. D. Y. Kim, K. J. Won, M. S. Yoon, D. I. Hwang, S. W. Yoon, J. H. Park, B. Kim, and H. M. Lee, Chrysanthemum boreale Makino essential oil induces keratinocyte proliferation and skin regeneration, Nat. Prod. Res., 29(6), 562 (2015). https://doi.org/10.1080/14786419.2014.952231
  18. D. Y. Kim, K. J. Won, M. S. Yoon, H. J. Yu, J. H. Park, B. Kim, and H. M. Lee, Chrysanthemum boreale flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells, Pharm. Biol., 53(5), 725 (2014).
  19. D. Y. Kim, K. J. Won, D. I. Hwang, S. W. Yoon, S. J. Lee, J. H. Park, M. S. Yoon, B. Kim, and H. M. Lee, Potential Skin Regeneration Activity and Chemical Composition of Absolute from Pueraria thunbergiana Flower, Nat. Prod. Commun., 10(11), 2009 (2015).