• Title/Summary/Keyword: 에틸렌 반응로

Search Result 255, Processing Time 0.032 seconds

Phytochromes are Involved in the Regulation of Growth and the Gravitropic Response via Ethylene Production in Hypocotyl of Arabidopsis (애기장대의 하배축에서 피토크롬이 생장과 굴중성 반응에 미치는 영향)

  • Lee, Sang Seung;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Light is essential to the growth and development of plants, and it is perceived by phytochromes, which are one of the photoreceptors that regulate physiological responses in plants. Ethylene regulates the dormancy, senescence, growth, and development of organs in plants. This research focused on the interaction of phytochromes and ethylene to control hypocotyl growth and gravitropism using phytochrome mutants of Arabidopsis, phyA, phyB, and phyAB, under three light conditions: red (R) light, farred (FR) light, and white light. The mutant phyAB exhibited the most stimulation of gravitropic response of all three phytochrome mutants and wild type (WT) in all three light conditions. Moreover, phyB in the R light condition showed more negative gravitropism than phyA. However, phyB in the FR light condition showed less curvature than phyA. The hypocotyl growth pattern was similar to the gravitropic response in several light conditions. To explain the mechanism of the regulation of gravitropic response and growth, we measured the ethylene production and activities of in vitro ACS and ACO. Ethylene production was reduced in all the mutants grown in white light in comparison to the WT. Ethylene production increased in the phyA grown in R light and phyB grown in FR light in comparison to the other mutants. The ACS activity coincided with the ethylene production in the phyA and the phyB grown in R light and FR light, respectively. These results suggest that the Pfr form of phyB in R light and the Pr form of phyA in FR light increased ethylene production via increasing ACS activity.

Root Gravitropic Response of Phytochrome Mutant (phyAB) in Arabidopsis (Arabidopsis 피토크롬 돌연변이체(phyAB)의 뿌리 굴중성 반응)

  • Woo, Soon-Hwa;Oh, Seung-Eun;Kim, Jong-Sik;Mullen, Jack L.;Hangarter, Roger P.;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2008
  • Phytochrome double mutant (PhyAB) showed the delayed root gravitropic response compared to the wild type (WT) in Arabidopsis. After 8 hr of gravistimulation, the gravitropic response of mutant showed 48% of the WT. The delayed response started at 1.5 hr after gravistimulation. And we measured the ethylene production in the root segments of WT and mutant for 12 hr. Ethylene production of mutant decreased about 40% of the WT at 12 hr. This result suggested that the phytochrome might be linked with ethylene production in some way. Generally, ethylene inhibits the growth of plant organs including roots. We measured the root growth rate in the presence of ACC (1-aminocyclopropane-1-carboxylic acid), a precursor of ethylene. And WT showed the inhibition of root growth with ACC, but mutant did not show the inhibition as WT did. To confirm the relationship between the ethylene and gravitropic response, we measured the gravitropic response with ACC. In the presence of $10^{-6}$ M ACC, WT showed the 37.4% inhibition compared to the control (no ACC), whereas mutant showed the only 6.6% inhibition of control (no ACC). This research suggested the relationship between phytochrome and gravitropic response through an ethylene production.

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Ca2+ Regulators affect the Gravitropism and Ethylene Production Induced by Malformin A1 in Maize Root (옥수수 뿌리에서 칼슘 이온 조절제가 malformin A1에 의해 유도된 굴중성과 에틸렌 생합성에 미치는 영향)

  • Hong, Sung-Hyun;Oh, Seung-Eun;Kim, Kun-Woo;Jeong, Hyung-Jin;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.174-178
    • /
    • 2007
  • Treatment of malformin A1 is known to increase ethylene production 130% at 4 hr and 56% at 8 hr after treatment in maize root compared to untreated plants. The ethylene production by malformin A1 was maximum level at 4 hr and slowly decreased up to 8 hr. Calcium ion regulators such as A23187 (calcium ionophore) and verapamil (calcium channel blocker) stimulated ethylene production. Treatment of both calcium ion regulators increased about 30% of ethylene production at 4 hr, and 20% at 8 hr. Both calcium ion regulators did not stimulate malformin A1-induced ethylene production at 4 hr as malformin A1 itself did. However, the treatment of calcium ion regulators with malformin A1 maintains the ethylene production for 8 hr. These results suggested that the proper concentration of calcium might need to confer the effect of malformin A1 on the ethylene production. Malformin A1 suppressed the gravitropic curvature of maize root about 58% at 4 hr and 42% at 8 hr compared to control plant. Verapamil inhibited the gravitropic curvature about 54% at 4 hr and 23% at 8 hr compared to control, respectively. But A23187 could not. In addition, verapamil showed more inhibition in malformin A1-induced gravitropic curvature than A23187 in malformin A1 induced. These data suggested that calcium ion regulators affect the malformin A1-induced ethylene production and gravitropic curvature, and give the evidence that calcium ion play an important role in gravitropic curvature in maize root.

Synthesis of Tetrafluoroethylene from the Pyrolysis of Chlorodifluoromethane in the Presence of Steam (과열 수증기를 이용한 클로로디플루오르메탄 열분해 반응에 의한 테트라플루오르에틸렌의 합성)

  • Han, Myungwan;Kim, Beom-Sik;Kim, Chul-Ung;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.190-195
    • /
    • 1999
  • The thermal pyrolysis of chlorodifluoromethane (R22) for producting tetrafluoroethylene (TFE) has been studied using the tubular reactor designed by the authors. The reaction temperature over $600{\sim}850^{\circ}C$, residence time over 0.005~0.6 sec, and steam/R22 ratio 3 to 30 were varied through experiments to analyze the effect of these variables on the conversion of R22 and selectivity for TFE. We have provided the guidelines for the optimal operation and design for the pyrolysis reactor. With increasing the dilution ratio, not only the conversion of R22 but also the selectivity for TFE increase. The optimum range of reaction temperature was $700{\sim}750^{\circ}C$ and the residence time 0.07~0.1 sec. In the kinetic study, first order rate equation was fitted well with the experimental data. This indicates that the main reaction step is a $CF_2$ generation from R22 pyrolysis. The range of activation energy for the rate constant was obtained 44.7~48 kcal/mol.

  • PDF

Synergistic Effect of Ethylene-Propane Mixture on Soot Formation in Counterflow Diffusion Flame (대향류 확산 화염에서 에틸렌-프로판 혼합 연료의 매연 생성 상승 효과)

  • Hwang, Jun-Yeong;Jeong, Seok-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.89-102
    • /
    • 1997
  • 대향류 확산 화염의 매연 생성 특성에 대한 실험적 연구가 수행되었으며, 그 결과 에틸렌 ($C_2H_4$)-프로판($C_3H_8$) 혼합 연료의 경우 매연 생성 상승 효과 (synergistic effect)가 관측되었다. 프로판과 에틸렌의 PAH 생성 양상이 상이하게 나타났으며, 소량의 프로판을 에틸렌 확산 화염에 첨가할 경우 순수 연료에 비하여 매연 및 PAH (다중 고리 방향족 탄화수소; polycyclic aromatic hydrocarbon) 생성이 증대되었다. 단조적으로 변화하는 아세틸렌($C_2H_2$) 농도와 단열 화염 온도를 고려할 때, 이러한 결과는 HACA (H-abstraction-$C_2H_2$-addition) 반응만으로는 확산 화염에서의 매연 발생 및 성장을 설명할 수 없음을 의미한다. 수치해석과 실험 결과의 비교로부터 초기 PAH의 생성 과정을 규명하였으며 이 과정에서 C3 화학종의 재결합 반웅이 매우 중요함을 확인할 수 있었다. 또한, 이러한 C3 화학종과 C2 화학종의 상호 보완적인 역할에 의하여 에틸렌-프로판 혼합 연료에서 매연 생성이 증대됨을 밝혔다.

  • PDF

Insensitivity of the ageotropum Pea Mutant Roots to Gravity (완두 돌연변이체 ageotropum 뿌리의 중력불감성)

  • Kim, Jeong-Im;Bin G. Kang
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.345-350
    • /
    • 1995
  • Root gravitropism was investigated in the pea (Pisum sativum L.) mutant ageotropum lacking normal gravitropic response. Exogenous ethylene treatment inhibited gravitropic response in the normal (wild type) pea rook, but had no significant effect to restore the unresponsiveness in the mutant Neither inhibitors of ethylene biosynthesis nor antagonists of ethylene action were able to bring about the development of gravioopic curvature in the ageotropum roots. Auxin action seems to be normal since asymmetric application of agar blocks containing auxin to the mutant roots caused normal gravitropic response to occur. Endogenous as well as auxin-induced ethylene production in tissue segments of the mutant root was about equal to that of the wild type. However no appreciable lateral transport of labeled auxin was observed in glavistimulated mutant roots whereas typical auxin asymetry was apparent in the wild type roots under the same conditions. It is concluded that the mutant has a defect in either gravity perception or its transduction, but not in the effector system involving auxin action.

  • PDF

Regulation of Phorbol 12-Myristate 13-Acetate in the Gravitropic Response and Ethylene Production in Primary Roots of Maize (옥수수 뿌리에서 굴중성 반응과 에틸렌 생성에 미치는 Phorbol 12-myristate 13-acetate 조절 작용)

  • Jeong, Yun-Ho;Kim, Jong-Sik;Lee, Kon-Joo;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.87-91
    • /
    • 2012
  • Phorbol 12-myristate 13-acetate (PMA), a known tumor-promoting phorbol ester, activates the signal transduction enzyme protein kinase C (PKC) in animal cells. We investigated the effect of PMA on the regulation of gravitropism via ethylene production in primary roots of maize. PMA stimulated root growth and the gravitropic response in a concentration-dependent manner at $10^{-6}$ M and $10^{-4}$ M over 8 hrs. These effects were prevented by treatment with staurosporine (STA), a potent inhibitor of PKC. These results support the possibility that the gravitropic response might be regulated through protein kinases that are involved in the signal transduction system. Ethylene is known to play a role in the regulation of root growth and gravitropism. Ethylene production was increased by about 26% and 37% of the control rate in response to $10^{-6}$ M and $10^{-4}$ M PMA, respectively. PMA also stimulated the activity of ACC synthase (ACS), which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC) in the ethylene production pathway. These effects on ethylene production were also prevented by STA treatment. These results suggest that the root gravitropic response in maize is regulated through protein kinases via ethylene production.

Conjugate Heat Transfer Analysis of an Ethylene Furnace (에틸렌 반응로에 대한 복합 열전달 해석)

  • Ahn, Joon;Park, Jin Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.515-519
    • /
    • 2015
  • Conjugate heat transfer analysis for an ethylene furnace was carried out based on numerical simulation. Detailed distributions of velocity vectors, chemical species, and temperature inside the furnace are presented and discussed. Von Mises stress and heat flux at the tube surface were also evaluated to elucidate mechanisms regarding failure of the tube. Maximum stress was found at the upstream elbow of the tube, which did not coincide with the location of maximum heat flux. This implies that thermal stress at a steady state would not be a dominant component of the stress. Degradation of the material, as well as the system arrangement, should be considered in order to accurately predict the lifetime of the tube material in the furnace.

Ethylene Gas Indicator for Monitoring Climacteric Fruit Ripening (과일 숙성 에틸렌가스 지시계 기술개발 현황)

  • Shin, Dong Un;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • Recently, intelligent packaging of foods has been increasingly developed in response to the growing interest of consumers in checking food quality. Indicators, an important element in intelligent packaging, change color to detect specific substances or indicate food quality changes. Gas indicators can be built into food packaging to detect volatile substances that are released when food quality changes. Ethylene gas is produced as climacteric fruits ripen. Climacteric fruit ripening results from a rapid increase in ethylene production and respiration. In the case of packaged fruits, the ethylene gas concentration in the headspace is closely related to the ripeness of each fruit variety. If an ethylene gas indicator that can be used in fruit packaging is available, the consumer will be able to eat the fruit at the optimal time. In this paper, the characteristics and pros and cons of the ethylene gas indicators developed so far were analyzed by reviewing various types of indicators such as metal reduction-based indicator, fluorescence-based indicator, pH indicator-based indicator, and liposome-based indicator.