Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.2.148

Root Gravitropic Response of Phytochrome Mutant (phyAB) in Arabidopsis  

Woo, Soon-Hwa (Department of Biological Sciences, Andong National University)
Oh, Seung-Eun (Department of Biological Sciences, Konkuk University)
Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
Mullen, Jack L. (Department of Biology, Indiana University)
Hangarter, Roger P. (Department of Biology, Indiana University)
Kim, Soon-Young (Department of Biological Sciences, Andong National University)
Publication Information
Journal of Life Science / v.18, no.2, 2008 , pp. 148-153 More about this Journal
Abstract
Phytochrome double mutant (PhyAB) showed the delayed root gravitropic response compared to the wild type (WT) in Arabidopsis. After 8 hr of gravistimulation, the gravitropic response of mutant showed 48% of the WT. The delayed response started at 1.5 hr after gravistimulation. And we measured the ethylene production in the root segments of WT and mutant for 12 hr. Ethylene production of mutant decreased about 40% of the WT at 12 hr. This result suggested that the phytochrome might be linked with ethylene production in some way. Generally, ethylene inhibits the growth of plant organs including roots. We measured the root growth rate in the presence of ACC (1-aminocyclopropane-1-carboxylic acid), a precursor of ethylene. And WT showed the inhibition of root growth with ACC, but mutant did not show the inhibition as WT did. To confirm the relationship between the ethylene and gravitropic response, we measured the gravitropic response with ACC. In the presence of $10^{-6}$ M ACC, WT showed the 37.4% inhibition compared to the control (no ACC), whereas mutant showed the only 6.6% inhibition of control (no ACC). This research suggested the relationship between phytochrome and gravitropic response through an ethylene production.
Keywords
Gravitropic response; phytochrome double mutants (phyAB); ethylene; Arabidopsis; root;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Harrison, M. A. and P. G. Pickard. 1986. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls. Plant Physiol. 80, 592-595   DOI   ScienceOn
2 Kim, S. Y. and T. J. Mulkey. 1997b. Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation of intact primary roots in maize (Zea mays L.). J. Plant Biology. 40, 256-260   DOI
3 Poppe, C., R. P. Hangarter, R. A. Sharrock, F. Nagy and E. Schafer. 1996. The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynth is a photomorphogenic response mediated synergistically by the far-red-absorbing forms of phytochromes A and B. Planta 199, 511-514
4 Salisbury, F. J., A. Hall, C. S. Grierson and K. J. Halliday. 2007. Phytochrome coordinates Arabidopsis shoot and root development. Plant J. 50, 429-438   DOI   ScienceOn
5 Vangronsveld, J., H. Clijsters and M. Van Poucke. 1988. Phytochrome-controlled ethylene biosynthesis of intact etiolated bean seedlings. Planta 174, 19-24   DOI   ScienceOn
6 Mullen, J. L., E. Turk, K. Johnson, C. Wolverton, H. Ishikawa, C. Simmons, D. Soil and M. L. Evans. 1998. Root-growth behavior of the Arabidopsis mutant rgr1. Roles of gravitropism and circumnutation in the waving/ coiling phenomenon. Plant Physiol. 118, 1139-1145   DOI
7 Lu, Y. T., H. Hidaka and L. J. Feldman. 1996. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta 199, 18-24
8 Friml, J. and K. Palme. 2002. Polar auxin transport-old questions and new concepts? Plant Mol. Biol. 49, 273-284   DOI   ScienceOn
9 Swarup, R., P. Perry, D. Hagenbeek, D. Van Der Straete, G. T. Beemster, G. Sandberg, R. Bhalerao, K. Ljung and M. J. Bennett. 2007. Ethylene pregulates auxin biosynthesis in Arbidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 19, 2186-2196   DOI   ScienceOn
10 Takano, M., H. Kanegae, T. Shinomura, A. Miyao, H. Hirochika and M. Furuya. 2001. Isolation and characterization of rice phytochrome A mutants. Plant Cell. 13, 521-534   DOI   ScienceOn
11 Foo, E., J. J. Ross, N. W. Davies, J. B. Reid and J. L. Weller. 2006. A role for ethylene in the phytochromemediated control of vegetative development. Plant J. 46, 911-921   DOI   ScienceOn
12 Mulkey, T. J., and M. L. Evans. 1981. Geotropism in corn roots: Evidence for its mediation by differential acid efflux. Science. 212, 70-71   DOI
13 Blakeslee, J. J., A. Bandyopadhyay, W. A. Peer, S. N. Makam and A.S. Murphy. 2004. Relocalization of the PIN1 auxin efflux facilitatior plays a role in phototropic response. Plant Physiol. 134, 28-31   DOI   ScienceOn
14 Liscum, E. and R. P. Hangarter. 1993. Genetic evidence that the Pr form of phytochrome B plays a role in Arabidopsis thaliana gravitropism. Plant Physiol. 103, 15-19   DOI
15 Correll, M. J. and J. Z. Kiss. 2005. The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol. 46, 317-323   DOI   ScienceOn
16 Hennig, L., W. M. Stoddart, M. Dieterle, G. C. Whitelam and E. Schafer. 2002. Phytochrome E controls light-induced germination of Arabidospsis. Plant Physiol. 128, 194-200   DOI   ScienceOn
17 Michalczuk, B. and R. M. Rudnicki. 1993. The effects of monochromatic red light on ethylene production in the leaves of Impatiens balsamina L. and other species. Plant Growth Reg. 13, 125-131   DOI   ScienceOn
18 Hangarter, R. P. 1997. Gravity, light and plant form. Plant Cell Environ. 20, 796-800   DOI   ScienceOn
19 Rosen, E., R. Chen and P. H. masson. 1999. Root gravitropism: a complex response to a simple stimulus? Trends Plant Sci. 4, 407-412   DOI   ScienceOn
20 Buer, C. S., G. O. Wasteneys and J. Masle. 2003. Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol. 132, 1085-1096   DOI   ScienceOn
21 Franklin, K. A., U. Praekelt, W. M. Stoddart, O. E. Bilingham, O. E. Halliday and G. C. Whitelam. 2003. Phytochromes B, D and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol. 131, 1340-1346   DOI   ScienceOn
22 Delvin, P. F., P. R. Robson, S. R. Patel, L. Goosey, R. A. Sharrock and G. C. Whitelam. 1999. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flower time. Plant Physiol. 119, 909-915   DOI   ScienceOn
23 Kiss, J. Z., R. E. Edelmann and P. C. Wood. 1999. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in space flight studies. Planta 209, 96-103   DOI   ScienceOn
24 Kim, S. Y., Y. Kim, K. S. Kisang and K. W. Kim. 2000. Action of malformin A1 on gravitropic curvature in primary roots of maize (Zea mays L.). J. Plant Biol. 43, 183-188   DOI   ScienceOn
25 Clough, R. C. and R. D. Vierstra. 1997. Phytochrome degradation. Plant Cell Environ. 20, 713-721   DOI   ScienceOn
26 Parks, B. M. and E. P. Splading. 1999. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc. Natl. Acad. Sci. USA 96, 14142-14146   DOI   ScienceOn
27 Sharrock, R. A. and T. Clack. 2002. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol. 130, 442-456   DOI   ScienceOn
28 Abeles, F. B., P. W. Morgan and M. E. Saltveit. 1992. Ethylene in Plant Biology. 2nd eds., Academic Press. San Diego. CA, USA.
29 Madlung, A., F. J. Behringer and T. L. Lomax. 1999. Ethylene plays multiple non-primary roles in modulating the gravitropic response in tomato. Plant Physiol. 120, 897-906   DOI
30 Clack, T., S. Mathews and R. A. Sharrock. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413-427   DOI   ScienceOn
31 Kim, S. Y. and T. J. Mulkey. 1997a. Effect of auxin and ethylene on elongation of intact primary roots of maize (Zea mays L.). J. Plant Biology. 40, 249-255   DOI
32 Nagatani, A. 2004. Light-regulated nuclear localization of phytochromes. Curr. Opin. Plant Biol. 7, 708-711   DOI   ScienceOn