Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.1.87

Regulation of Phorbol 12-Myristate 13-Acetate in the Gravitropic Response and Ethylene Production in Primary Roots of Maize  

Jeong, Yun-Ho (Department of Biological Sciences, Andong National University)
Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
Lee, Kon-Joo (Department of Biological Sciences, Andong National University)
Kim, Soon-Young (Department of Biological Sciences, Andong National University)
Publication Information
Journal of Life Science / v.22, no.1, 2012 , pp. 87-91 More about this Journal
Abstract
Phorbol 12-myristate 13-acetate (PMA), a known tumor-promoting phorbol ester, activates the signal transduction enzyme protein kinase C (PKC) in animal cells. We investigated the effect of PMA on the regulation of gravitropism via ethylene production in primary roots of maize. PMA stimulated root growth and the gravitropic response in a concentration-dependent manner at $10^{-6}$ M and $10^{-4}$ M over 8 hrs. These effects were prevented by treatment with staurosporine (STA), a potent inhibitor of PKC. These results support the possibility that the gravitropic response might be regulated through protein kinases that are involved in the signal transduction system. Ethylene is known to play a role in the regulation of root growth and gravitropism. Ethylene production was increased by about 26% and 37% of the control rate in response to $10^{-6}$ M and $10^{-4}$ M PMA, respectively. PMA also stimulated the activity of ACC synthase (ACS), which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC) in the ethylene production pathway. These effects on ethylene production were also prevented by STA treatment. These results suggest that the root gravitropic response in maize is regulated through protein kinases via ethylene production.
Keywords
PMA; PKC; gravitropic response; ethylene production; maize roots;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Vandenbussche, F., J. Petrasek, P. Zadnikova, K. Hoyerova, B. Pesek, V. Raz, R. Swarup, M. Bennett, E. Zazimalova, E. Benkova, and Van Der D. Straete. 2010. The auxin influx carreirs AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137, 597-606.   DOI   ScienceOn
2 Wang, K. L. C., H. Li, and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell S131-S151.
3 Cote, G. G. 1995. Signal transduction in leaf movement. Plant Physiol. 109, 729-734.
4 Geisler, M. and A. S. Murphy. 2006. The ABC of auxin transport: The role of p-glycoproteins in plant development FEBS Letter 580, 1094-1102.   DOI   ScienceOn
5 Hardin, S. C. and S. M. Wolniak. 2001. Expression of the mitogen-activated protein kinase kinase ZmMEK1 in the primary roots of maize. Planta 213, 916-926.   DOI   ScienceOn
6 Huang, F., M. K. Zago, L. Abas, A. Marion, S. Galvan-Ampudia, and R. Offringa. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22, 1129-1142.   DOI   ScienceOn
7 Joo, J. H., H. J. Yoo, I. Hwang, J. S. Lee, K. H. Nam, and Y. S. Bae. 2005. Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS letters 579, 1243-1248.   DOI   ScienceOn
8 Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283-307.   DOI   ScienceOn
9 Kim, S. Y. and T. J. Mulkey. 1997. Effect of ethylene antagonists on auxin -induced inhibition of intact primary root elongation in maize (Zea mays L.). J. Plant Biol. 40, 256-260.   과학기술학회마을   DOI
10 Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76, 170-174.   DOI   ScienceOn
11 Chandok, M. R. and S. K. Sopory. 1998. ZmcPKC70, a protein kinase C-type enzyme from maize. J. Biol. Chem. 273, 19235-19242.   DOI
12 Munnik, T., R. F. Irvine, and A. Musgrave. 1998. Phospholipid signaling in plants. Biochem. Biophys. Acta 1389, 222-272.   DOI   ScienceOn
13 Monshausen, G. B., N. D. Miller, A. S. Murphy, and S. Gilroy. 2011. Dynamics of auxin-dependent $Ca^{2+}$ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65, 309-318.   DOI   ScienceOn
14 Morse, M. J., R. C. Crain, G. G. Cote, and R. L. Satter. 1989. Light-stimulated inositiol phospholipid turnover in Samanea saman pulvini. Plant Physiol. 89, 724-727.   DOI   ScienceOn
15 Mulkey, T. J., D. R. Poling, S. Y. Kim, and M. L. Evans. 1988. Effect of aminoethoxyvinyl glycine on root gravitropism in maize. Curr. Topics Plant Bilchem. Physiol. 7, 277.
16 Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses FASEB 9, 484-496.
17 Wang, H. and W. R. Woodson. 1989. Reversible inhibition if ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol. 89, 434-438   DOI   ScienceOn
18 Woeste, K. E. C., C. Ye, and J. J. Kieber. 1999. Two Arabidopsis mutants that overproduced ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane- 1-carboxylic acid synthase. Plant Physiol. 119, 521-529.   DOI   ScienceOn
19 Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Reu. Plant Physiol. 35, 155-189.   DOI   ScienceOn
20 Yoo, S. D., Y. Cho, and J. Sheen. 2009. Emerging connections in the ethylene signaling network. Trends Plant Sci. 14, 270-279.   DOI   ScienceOn
21 Paponov, I. A., W. D. Teale, M. Trebar, I. Blilou, and K. Palme. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 10, 170-177.   DOI   ScienceOn
22 Ruzicka, K., K. Ljung, S. Vanneste, R. Podhorska, T. Beeckman, J. Friml, and E. Benkova. 2007. Ethylene regulates root growth through effect on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19, 2197- 2212.   DOI   ScienceOn
23 Stepanova, A. N., J. Yun, A. V. Likhacheva, and J. M. Alonso. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19, 2169-2185.   DOI   ScienceOn
24 Sukumar, P., K. S. Edwards, A. Rachman, A. Delong, and G. K. Muday. 2009. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol. 150, 722-735.   DOI   ScienceOn
25 Yip, W. K., X. Z. Jiao, and S. F. Yang. 1988. Dependence of in vivo ethylene production rate on 1-aminocyclopropane- 1-carboxylic acid content and oxygen concentration. Plant Physiol. 88, 553.
26 Swarup, R., E. M. Kramer, P. Perry, K. Knox, H. M. O. Leyser, J. Haseloff, G. T. S. Beemster, R. Bhalerao, and M. J. Bennett. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057-1065.
27 Szczegielniak, J., A. Liwosz, I. Jurkowski, M. Loog, G. Dobrowolsda, P. Ke, A. C. Harmon, and G. Muszynska. 2000. Calcium-dependent protein kinase from maize seedlings activated by phospholipid. Eur. J. Biochem. 267, 3818- 3827.   DOI   ScienceOn