• Title/Summary/Keyword: 에지 클라우드

Search Result 29, Processing Time 0.023 seconds

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

A Study on Artificial Intelligence based Intrusion Detection System for Internet of Things (사물인터넷을 위한 인공지능 기반의 침입 탐지 시스템에 관한 연구)

  • Ryu, Jung Hyun;Kwon, Byung Wook;Suk, Sang Kee;Park, Jong Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.145-148
    • /
    • 2018
  • 클라우드 컴퓨팅 기반 사물인터넷 환경은 급격히 증가하는 통신량, 기종 간 이질성, 지연 시간과 같은 문제점으로 인해 어려움을 겪고 있다. 이를 해결하기 위한 대표적인 방법 중 하나는 분산 모델을 통해 클라우드 컴퓨팅 환경에 집중된 네트워크 또는 컴퓨팅 파워를 분산시키는 포그 컴퓨팅 (Fog Computing) 또는 에지 컴퓨팅 (Edge Computing)을 활용하는 것이다. 그러나 이 분산형 네트워크의 단점을 보완하기 위해 사물인터넷 (IoT, Internet of Things)과 가장 가까이 존재하는 네트워크 모델로써 미스트 컴퓨팅 (Mist Computing)이 탄생하였다. 그러나 다양한 프로토콜에 의해 통신이 이루어지는 사물인터넷 환경에는 수천 가지 제로데이 공격이 존재한다. 이 공격들의 대부분은 이전에 알려진 공격의 작은 변형체이다. 이러한 공격을 효과적으로 막기 위해 사물인터넷 환경에서의 침입 탐지 시스템은 지능적이어야 한다. 따라서 본 논문에서는, 미스트 컴퓨팅 환경에서 새로운 또는 지속적으로 변화하는 사물인터넷 대상 공격을 효과적으로 방어하기 위한 인공지능 기반 침입 탐지 시스템을 제안한다.

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

Intrusion Detection for IoT Traffic in Edge Cloud (에지 클라우드 환경에서 사물인터넷 트래픽 침입 탐지)

  • Shin, Kwang-Seong;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.138-140
    • /
    • 2020
  • As the IoT is applied to home and industrial networks, data generated by the IoT is being processed at the cloud edge. Intrusion detection function is very important because it can be operated by invading IoT devices through the cloud edge. Data delivered to the edge network in the cloud environment is traffic at the application layer. In order to determine the intrusion of the packet transmitted to the IoT, the intrusion should be detected at the application layer. This paper proposes the intrusion detection function at the application layer excluding normal traffic from IoT intrusion detection function. As the proposed method, we obtained the intrusion detection result by decision tree method and explained the detection result for each feature.

Performance Comparison and Optimal Selection of Computing Techniques for Corridor Surveillance (회랑감시를 위한 컴퓨팅 기법의 성능 비교와 최적 선택 연구)

  • Gyeong-rae Jo;Seok-min Hong;Won-hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.770-775
    • /
    • 2023
  • Recently, as the amount of digital data increases exponentially, the importance of data processing systems is being emphasized. In this situation, the selection and construction of data processing systems are becoming more important. In this study, the performance of cloud computing (CC), edge computing (EC), and UAV-based intelligent edge computing (UEC) was compared as a way to solve this problem. The characteristics, strengths, and weaknesses of each method were analyzed. In particular, this study focused on real-time large-capacity data processing situations such as corridor monitoring. When conducting the experiment, a specific scenario was assumed and a penalty was given to the infrastructure. In this way, it was possible to evaluate performance in real situations more accurately. In addition, the effectiveness and limitations of each computing method were more clearly understood, and through this, the help was provided to enable more effective system selection.

Design and Implementation of Sensor Information Management System based on Celery-MongoDB (Celery-MongoDB 를 활용한 센서정보 관리시스템 설계 및 구현)

  • Kang, Yun-Hee
    • Journal of Platform Technology
    • /
    • v.9 no.2
    • /
    • pp.3-9
    • /
    • 2021
  • The management of sensor information requires the functions for registering, modifying and deleting rapidly sensor information about various many sensors. In this research, Celery and MongoDB are used for developing a sensory data management system. Celery supplies a queue structure based on asynchronous communication in Python. Celery is a distributed simple job-queue but reliable distributed system suitable for processing large message. MongoDB is a NoSQL database that is capable of managing various informal information. In this experiment, we have checked that variety of sensor information can be processed with this system in a IoT environment. To improve the performance for handling a message with sensory data, this system will be deployed in the edge of a cloud infrastructure.

Study on Memory Performance Improvement based on Machine Learning (머신러닝 기반 메모리 성능 개선 연구)

  • Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.615-619
    • /
    • 2021
  • This study focuses on memory systems that are optimized to increase performance and energy efficiency in many embedded systems such as IoT, cloud computing, and edge computing, and proposes a performance improvement technique. The proposed technique improves memory system performance based on machine learning algorithms that are widely used in many applications. The machine learning technique can be used for various applications through supervised learning, and can be applied to a data classification task used in improving memory system performance. Data classification based on highly accurate machine learning techniques enables data to be appropriately arranged according to data usage patterns, thereby improving overall system performance.

Mobile Edge Computing based Charging Infrastructure considering Electric Vehicle Charging Efficiency (전기자동차 충전 효율성을 고려한 모바일 에지 컴퓨팅 기반 충전 인프라 구조)

  • Lee, Juyong;Lee, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.669-674
    • /
    • 2017
  • Due to the depletion of fossil fuels and the increase in environmental pollution, electric vehicles are attracting attention as next-generation transportation and are becoming popular all over the world. As the interest in electric vehicles and the penetration rate increase, studies on the charging infrastructure with vehicle-to-grid (V2G) technology and information technology are actively under way. In particular, communication with the grid network is the most important factor for stable charging and load management of electric vehicles. However, with the existing centralized infrastructure, there are problems when control-message requests increase and the charging infrastructure cannot efficiently operate due to slow response speed. In this paper, we propose a new charging infrastructure using mobile edge computing (MEC) that mitigates congestion and provides low latency by applying distributed cloud computing technology to wireless base stations. Through a performance evaluation, we confirm that the proposed charging infrastructure (with low latency) can cope with peak conditions more efficiently than the existing charging infrastructure.

A User Authentication Scheme using Blockchain in Smart Grid-based Edge Computing Environments (스마트 그리드 기반 엣지 컴퓨팅 환경에서 블록체인을 이용한 사용자 인증 기법)

  • Hakjun Lee;Youngsook Lee
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2022
  • The smart grid system has emerged to maximize energy efficiency through real-time information exchange between power providers and consumers by combining information technology and power supply systems. The authentication schemes using blockchain in a smart grid system have been proposed, which utilize an edge server's architecture to collect and store electric power-related information and process data between a central cloud server and smart grid-IoT devices. Although authentication schemes are being proposed to enhance security in the smart grid environment, many vulnerabilities are still reported. This paper presents a new mutual authentication scheme to guarantee users' privacy and anonymity in a smart grid based on edge computing using blockchain. In the proposed scheme, we use the smart contract for the key management's efficiency, such as updating and discarding key materials. Finally, we prove that the proposed scheme not only securely establishes a session key between the smart grid-IoT device of the user and the edge server but also guarantees anonymity.