• Title/Summary/Keyword: 에너지 교환

Search Result 750, Processing Time 0.026 seconds

Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers (강자성 공명법을 이용한 CoFe/MnIr 박막의 교환 결합 에너지 분석)

  • Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.204-209
    • /
    • 2012
  • We measure the ferromagnetic resonance signals in order to analyze the exchange coupling energy due to the uncompensated antiferromagnetic spins in exchange coupled CoFe/MnIr bilayers. The exchange bias fields ($H_{ex}$) and rotatable anisotropy fields ($H_{ra}$) are obtained from the ferromagnetic resonance fields measured with in-plane angle in thermal annealed samples with $t_{AF}$= 0, 3, and 10 nm. The sum of the $H_{ex}$ and $H_{ra}$ do not depend on the MnIr thickness, which means that all the uncompensated AF spins are aligned to one direction in $300^{\circ}C$ annealed samples. Therefore, the uncompensated AF spins are divided into two different parts. One parts are fixed at the interface between CoFe/MnIr bilayers and induces the $H_{ex}$, other parts are rotatable with magnetic field and induces the $H_{ra}$. Finally, the exchange coupling energy can be expressed by the sum of the exchange bias energy and rotatable anisotropy energy.

Efficiency Tests of Seawater Exchange System for Enhancement of Seawater Quality (해수교환시스템의 수질향상 효율평가)

  • Jang, Chang-Hwan;Kim, Sang-Taek;Kim, Hyo-Seob;Kim, Kyu-Han;Song, Man-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.206-215
    • /
    • 2010
  • The multi-outlets were installed on the existing seawater exchange breakwater in order to improve seawater exchange rate at Jumunjin harbor. Physical and numerical model system were fulfilled for 4 cases to evaluate seawater exchange system which is able to discharge water remotely. The seawater circulation pattern and seawater exchange rate in the harbor were compared and analyzed. Consequently, total seawater exchange rate for CASE 1 was calculated 48% due to the dead zones which hinder seawater circulation in the harbor. Otherwise, the seawater exchange rates of CASE 2, CASE 3, and CASE 4 with the installation of the system were enhanced 19%, 15% and 17%, respectively compare to CASE 1.

A Comparative Analysis of Energy Performance according to the Ventilation System in Apartment House (공동주택의 환기시스템별 에너지성능 비교 분석)

  • Kim, Gil-Tae;Chun, Chu-Young;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2015
  • The purpose of this study was to comparative analyses of energy performance in apartment houses adopted window frame-type natural ventilation, under-floor air distribution ventilation and heat recovery ventilation. As the object of energy simulation, the three type ventilation system with area of $84m^2$ was selected in apartment house. As a result, when the ECO2 simulation was performed, the 1st requirement quantity per annual were $159.9kWh/m^2yr$(CASE1, Natural Ventilation), $179.7kWh/m^2yr$(CASE2, Under-floor Air Distribution Ventilation) and $161.0kWh/m^2yr$(CASE3, Heat Recovery Ventilation).

Research Trends in Bipolar Membrane for Water Dissociation Catalysts and Energy Technology Applications (바이폴라막의 물 분해 촉매 및 에너지 기술 응용의 연구 동향)

  • Do-Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2024
  • The bipolar membrane is an ion exchange membrane consisting of a cation exchange layer, an anion exchange layer, and an interface layer, and is a membrane that generates protons and hydroxide ions based on water dissociation characteristics. Using these properties, research is being conducted in various application fields such as the chemical industry, food processing, environmental protection, and energy conversion and storage. This paper investigated the concept of bipolar membrane, water dissociation mechanism, and water dissociation catalyst to provide a comprehensive understanding of bipolar membrane technology, were investigated. Lastly, we also investigated the bipolar membrane process that has been recently applied to energy technology.

지중 열교환을 통한 에너지 절약방안

  • 조정식
    • 월간 기계설비
    • /
    • s.93
    • /
    • pp.60-75
    • /
    • 1998
  • 지표면으로부터 일정한 깊이 이하의 토양이 보유하고 있는 지열에너지는 에너지자원을 절약하기 위해서는 매우 유용한 에너지원이 될 수도 있다. 따라서 지중에너지를 활용하기 위한 지중온도분포에 대한 해석과 그 활용면에서 도로 융설시스템 및 건물의 냉난방의 에너지원으로 이용할 수 있는 에너지절약 방안에 대한 연구개발이 추진되고 있다.

  • PDF

Water Treatment of Low Pressure Steam turbine Generation on Small MSW Incinerationp Plant (중소형폐기물소각설비의 발전용 용수처리에 관한 연구)

  • Jeon, Kuem-Ha;Ha, Choon-Rai;Kim, Nack-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.836-839
    • /
    • 2009
  • 중소형 폐기물소각설비의 저압 저질의 포화증기를 이용한 폐열발전용 용수처리에 관한 연구를 수행 하였다. 기존 소각설비에 적용된 강산성 이온교환수지형 연수기에 역삼투압 멤브레인 처리와 강염기성 이온교환수지형 용수처리를 연결하여 보일러 용수를 처리한 결과, KS B6209의 30 $kg/cm_2$ 증기 압력의 보일러 용수기준에는 적합하였고, 증기의 비체적으로 증기 농도로 환산하면. 역삼투압법처리에 의한 방법보다는 강염기성이온교환수지형 용수처리를 연계 처리한 결과가 중소형폐기물소각설비의 저압증기터빈발전에 보다 적합한 것으로 나타났다.

  • PDF

Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC) (음이온교환막연료전지용 음이온교환막의 문제점과 해결방안)

  • Son, Tae Yang;Kim, Tae Hyun;Kim, Hyoung Juhn;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.489-496
    • /
    • 2018
  • Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.

Recent Progress on Proton Exchange Membrane Based Water Electrolysis (수소이온 교환막 기반 수전해의 최근 연구 동향)

  • Yang, Seungmin;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.275-282
    • /
    • 2022
  • In contemporary days, hydrogen-based energies including batteries are renowned to be effective. And its effectiveness comes from the fact that it possesses high efficiency as an energy carrier. Eco-friendly and high purity of hydrogens comes out from water electrolysis. And among different types of electrolysis, proton exchange membrane (PEM) water electrolysis is considered the most renewable, cheap, and eco-friendly. It produces oxygen and hydrogens which are feasible in using as energies. Since it has such a number of benefits, increased research is going on in PEM electrolysis. Nafion is widely used as PEM, but high cost and various other disadvantages leads to the exploration of alternative materials. This review is broadly classified into Nafion and non Nafion based PEM for water electrolysis.

Electrochemical Method for Measurement of Hydroxide Ion Conductivity and CO2 Poisoning Behavior of Anion Exchange Membrane (음이온 교환막의 정확한 OH-전도도 및 CO2 피독 효과 분석을 위한 전기화학적 측정법)

  • Kim, Suyeon;Kwon, Hugeun;Lee, Hyejin;Jung, Namgee;Bae, Byungchan;Shin, Dongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2022
  • The anion exchange membrane used in alkaline membrane fuel cells transports hydroxide ions, and ion conductivity affects fuel cell performance. Thus, the measurement of absolute hydroxide ion conductivity is essential. However, it is challenging to accurately measure hydroxide ion conductivity since hydroxide ions are easily poisoned in the form of bicarbonate by carbon dioxide in the atmosphere. In this study, we applied electrochemical ion exchange treatment to measure the absolute hydroxide ion conductivity of the anion exchange membrane. In addition, we investigated the effect of carbon dioxide poisoning of hydroxide ions on electrochemical performance by measuring bicarbonate conductivity. Commercial anion exchange membranes (FAA-3-50 and Orion TM1) and polyphenylene-based block copolymer (QPP-6F) were used.