Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.5.275

Recent Progress on Proton Exchange Membrane Based Water Electrolysis  

Yang, Seungmin (Nano Science and Engineering, Underwood International College, Yonsei University)
Rajkumar, Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.32, no.5, 2022 , pp. 275-282 More about this Journal
Abstract
In contemporary days, hydrogen-based energies including batteries are renowned to be effective. And its effectiveness comes from the fact that it possesses high efficiency as an energy carrier. Eco-friendly and high purity of hydrogens comes out from water electrolysis. And among different types of electrolysis, proton exchange membrane (PEM) water electrolysis is considered the most renewable, cheap, and eco-friendly. It produces oxygen and hydrogens which are feasible in using as energies. Since it has such a number of benefits, increased research is going on in PEM electrolysis. Nafion is widely used as PEM, but high cost and various other disadvantages leads to the exploration of alternative materials. This review is broadly classified into Nafion and non Nafion based PEM for water electrolysis.
Keywords
Nafion; electrolyzer; proton exchange membrane; solid polymer electrolyte;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Kang, C. H. Park, and C. H. Lee, "Development of molecular dynamics model for water electrolysis ionomer", Membr. J., 30, 433 (2020).   DOI
2 S. J. Im, R. Patel, S. J. Shin, J. H. Kim, and B. R. Min, "Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells", Korean J. Chem. Eng., 25, 732 (2008).   DOI
3 S. M. Lee, R. Patel, and J. H. Kim, "Recent advance in microbial fuel cell based on composite membranes", Membr. J., 31, 120 (2021).   DOI
4 Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z.-F. Huang, X. Zhang, and J.-J. Zou, "Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers", Adv. Energy Mater., 12, 2103670 (2022).   DOI
5 B. Zhang, L. Fan, R. B. Ambre, T. Liu, Q. Meng, B. J. J. Timmer, and L. Sun, "Advancing proton exchange membrane electrolyzers with molecular catalysts", Joule, 4, 1408 (2020).   DOI
6 A. Selim, G. P. Szijjarto, L. Romanszki, and A. Tompos, "Development of WO3-Nafion based membranes for enabling higher water retention at low humidity and enhancing PEMFC performance at intermediate temperature operation", Polym., 14, 2492 (2022).   DOI
7 A. Muthumeenal, S. S. Pethaiah, and A. Nagendran, "Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol", Renew. Energy, 91, 75 (2016).   DOI
8 S. Y. Han, D. M. Yu, Y. H. Mo, S. M. Ahn, J. Y. Lee, T. H. Kim, S. J. Yoon, S. Hong, Y. T. Hong, and S. So, "Ion exchange capacity controlled biphenol-based sulfonated poly(arylene ether sulfone) for polymer electrolyte membrane water electrolyzers: Comparison of random and multi-block copolymers", J. Membr. Sci., 634, 119370 (2021).   DOI
9 N. R. Kang, T. H. Pham, H. Nederstedt, and P. Jannasch, "Durable and highly proton conducting poly(arylene perfluorophenylphosphonic acid) membranes", J. Membr. Sci., 623, 119074 (2021).   DOI
10 S. Thiele, B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, and D. Seeberger, "Bipolar membrane electrode assemblies for water electrolysis", ACS Appl. Ener. Mat., 3, 9635 (2020).   DOI
11 A. Albert, A. O. Barnett, M. S. Thomassen, T. J. Schmidt, and L. Gubler, "Radiation-Grafted polymer electrolyte membranes for water electrolysis cells: Evaluation of key membrane properties", ACS Appl. Mater. Interfaces, 7, 22203 (2015).   DOI
12 T. Kim, Y. Sihn, I.-H. Yoon, S. J. Yoon, K. Lee, J. H. Yang, S. So, and C. W. Park, "Monolayer hexagonal boron nitride nanosheets as proton-conductive gas barriers for polymer electrolyte membrane water electrolysis", ACS Appl. Nano Mat., 4, 9104 (2021).   DOI
13 C. J. Lee, J. Song, K. S. Yoon, Y. Rho, D. M. Yu, K.-H. Oh, J. Y. Lee, T.-H. Kim, Y. T. Hong, H.-J. Kim, S. J. Yoon, and S. So, "Controlling hydrophilic channel alignment of perfluorinated sulfonic acid membranes via biaxial drawing for high performance and durable polymer electrolyte membrane water electrolysis", J. Power Sources, 518, 230772 (2022).   DOI
14 Y. T. Goh, R. Patel, S. J. Im, J. H. Kim, and B. R. Min, "Synthesis and characterization of poly (ether sulfone) grafted poly(styrene sulfonic acid) for proton conducting membranes", Korean J. Chem. Eng., 26, 518 (2009).   DOI
15 T. K. Maiti, J. Singh, J. Majhi, A. Ahuja, S. Maiti, P. Dixit, S. Bhushan, A. Bandyopadhyay, and S. Chattopadhyay, "Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints", Polymer, 255, 125151 (2022).   DOI
16 S. Shiva Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - A review", Mater. Sci. Energy. Technol., 2, 442 (2019).
17 B.-H. Goo, S. Y. Paek, A. Z. Al Munsur, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, "Polyamide-coated Nafion composite membranes with reduced hydrogen crossover produced via interfacial polymerization", Int. J. Hydrogen Energy, 47, 1202 (2022).   DOI
18 A. Z. Al Munsur, B. H. Goo, Y. Kim, O. J. Kwon, S. Y. Paek, S. Y. Lee, H. J. Kim, and T. H. Kim, "Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly(acrylic acid) and poly(vinyl alcohol)", ACS Appl. Mater. Interfaces, 13, 28188 (2021).   DOI
19 S. Choi, S. H. Shin, D. H. Lee, G. Doo, D. W. Lee, J. Hyun, S. H. Yang, D. Man Yu, J. Y. Lee, and H. T. Kim, "Oligomeric chain extender-derived poly(p-phenylene)-based multi-block polymer membranes for a wide operating current density range in polymer electrolyte membrane water electrolysis", J. Power Sources, 526, 231146 (2022).   DOI
20 J. Bender, B. Mayerhofer, P. Trinke, B. Bensmann, R. Hanke-Rauschenbach, K. Krajinovic, S. Thiele, and J. Kerres, "H+-conducting aromatic multiblock copolymer and blend membranes and their application in pem electrolysis", Polym., 13, 3467 (2021).   DOI
21 C. Klose, T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K.-D. Kreuer, and S. Vierrath, "All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency", Adv. Energy Mater., 10, 1903995 (2020).   DOI
22 S. Siracusano, V. Baglio, F. Lufrano, P. Staiti, and A. S. Arico, "Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane", J. Membr. Sci., 448, 209 (2013).   DOI