DOI QR코드

DOI QR Code

Research Trends in Bipolar Membrane for Water Dissociation Catalysts and Energy Technology Applications

바이폴라막의 물 분해 촉매 및 에너지 기술 응용의 연구 동향

  • Do-Hyeong Kim (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Sang Yong Nam (Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 김도형 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 그린에너지융합연구소)
  • Received : 2023.12.08
  • Accepted : 2024.01.23
  • Published : 2024.02.29

Abstract

The bipolar membrane is an ion exchange membrane consisting of a cation exchange layer, an anion exchange layer, and an interface layer, and is a membrane that generates protons and hydroxide ions based on water dissociation characteristics. Using these properties, research is being conducted in various application fields such as the chemical industry, food processing, environmental protection, and energy conversion and storage. This paper investigated the concept of bipolar membrane, water dissociation mechanism, and water dissociation catalyst to provide a comprehensive understanding of bipolar membrane technology, were investigated. Lastly, we also investigated the bipolar membrane process that has been recently applied to energy technology.

바이폴라막은 양이온교환층과 음이온교환층 및 양극접합층으로 이루어진 이온교환막으로 물 분해 특성을 기반으로 하여 프로톤과 수산화 이온을 생성시키는 막이다. 이러한 특성을 이용하여 화학 산업, 식품 가공, 환경 보호, 에너지 변환 및 저장과 같은 다양한 응용 분야에서 연구가 되고 있다. 본 논문에서는 바이폴라막 기술에 대한 종합적인 이해를 제공하기 위해 바이폴라막의 개념 및 물 분해 메커니즘과 물 분해 촉매에 대한 조사하였다. 마지막으로 최근 에너지 기술에 적용되고 있는 바이폴라막 프로세스를 조사하였다.

Keywords

Acknowledgement

이 연구는 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원(P0017310, 2022년 산업혁신인재성장지원사업(해외연계)), 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No.2020R1A6A03038697) 및 2023년도 경상국립대학교 연구년제 연구교수 연구지원비를 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. P. K. Giesbrecht and M. S. Freund, "Recent advances in bipolar membrane design and applications", Chem. Mater., 32, 8060 (2020). 
  2. S. Chabi, A. G. Wright, S. Holdcroft, and M. S. Freund, "Transparent bipolar membrane for water splitting applications", ACS Appl. Mater Interfaces, 9, 26749 (2017). 
  3. V. J. Frilette, "Preparation and characterization of bipolar ion exchange membranes", J. Phys. Chem., 60, 435 (1956). 
  4. R. A. Tufa, M. A. Blommaert, D. Chanda, Q. Li, D. A. Vermaas, and D. Aili, "Bipolar membrane and interface materials for electrochemical energy systems", ACS Appl. Energy Mater., 4, 7419 (2021). 
  5. R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H. V. M. Hamelers, and M. Tedesco, "Bipolar membranes: A review on principles, latest developments, and applications", J. Membr. Sci., 617, 118538 (2021). 
  6. H. Strathmann, J. J. Krol, H.-J. Rapp, and G. Eigenberger, "Limiting current density and water dissociation in bipolar membranes", J. Membr. Sci., 125, 123 (1997). 
  7. A. Alcaraz, P. Ramirez, J. A. Manzanares, and S. Mafe, "Conductive and capacitive properties of the bipolar membrane junction studied by AC impedance spectroscopy", J. Phys. Chem. B, 105, 11669 (2001). 
  8. A. Merkel, A. M. Ashrafi, and J. Ecer, "Bipolar membrane electrodialysis assisted pH correction of milk whey", J. Membr. Sci., 555, 185 (2018). 
  9. Q. Wang, B. Wu, C. Jiang, Y. Wang, and T. Xu, "Improving the water dissociation efficiency in a bipolar membrane with amino-functionalized MIL-101", J. Membr. Sci., 524, 370 (2017). 
  10. M. A. Blommaert, D. Aili, R. A. Tufa, Q. Li, W. A. Smith, and D. A. Vermaas, "Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems", ACS Energy Lett., 6, 2539 (2021). 
  11. M. Manohar, G. Shukla, R. P. Pandey, and V. K. Shahi, "Efficient bipolar membrane with protein interfacial layer for optimal water splitting", J. Ind. Eng. Chem., 47, 141 (2017). 
  12. V. I. Zabolotskii, N. V Shel'deshov, and N. P. Gnusin, "Dissociation of water molecules in systems with ion-exchange membranes", Russ. Chem. Rev., 57, 801 (1988). 
  13. S. Melnikov, "Ion transport and process of water dissociation in electromembrane system with bipolar membrane: Modelling of symmetrical case, membranes", Membranes, 13, 47 (2023). 
  14. P. Ramirez, S. Mar, and J. Manzanares, "Membrane potential of bipolar membranes", J. Electroanal. Chem., 404, 187 (1996). 
  15. Y. Luo, Y. Liu, J. Shen, and B. Van der Bruggen, "Application of bipolar membrane electrodialysis in environmental protection and resource recovery: A review", Membranes, 12, 829 (2022). 
  16. E. Al-Dhubhani, H. Swart, Z. Borneman, K. Nijmeijer, M. Tedesco, J. W. Post, and M. Saakes, "Entanglement-enhanced water dissociation in bipolar membranes with 3D electrospun junction and polymeric catalyst", ACS Appl. Energy Mater., 4, 3724 (2021). 
  17. R. Slmons, "Water splitting in ion exchange membranes", Electrochim. Acta, 30, 275 (1985). 
  18. S. S. Mel'nikov, O. V. Shapovalova, N. V. Shel'deshov, and V. I. Zabolotskii, "Effect of d-metal hydroxides on water dissociation in bipolar membranes", Pet. Chem., 51, 577 (2011). 
  19. L. Chen, Q. Xu, S. Z. Oener, K. Fabrizio, and S. W. Boettcher, "Design principles for water dissociation catalysts in high-performance bipolar membranes", Nat. Commun., 13, 3846 (2022). 
  20. R. Q. Fu, Y. Y. Cheng, T. W. Xu, and W. H. Yang, "Fundamental studies on the intermediate layer of a bipolar membrane. Part VI. Effect of the coordinated complex between starburst dendrimer PAMAM and chromium (III) on water dissociation at the interface of a bipolar membrane", Desalination, 196, 260 (2006). 
  21. R. Q. Fu, Y. H. Xue, T. W. Xu, and W. H. Yang, "Fundamental studies on the intermediate layer of a bipolar membrane Part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane", J. Colloid. Interface Sci., 285, 281 (2005). 
  22. Y. Xue, N. Wang, C. Huang, Y. Cheng, and T. Xu, "Catalytic water dissociation at the intermediate layer of a bipolar membrane: The role of carboxylated Boltorn® H30", J. Memb. Sci., 344, 129 (2009). 
  23. Y. Oda and A. T. Yawataya, "Neutrality-disturbance phenomenon of membrane-solution systems", Desalination, 5, 129 (1968). 
  24. N. H. Rathod, S. Mishra, S. Mishra, P. Upadhyay, L. Fan, V. Jegatheesan, and V. Kulshrestha, "Fabrication of efficient bipolar membranes with functionalized MOF interfacial layer for generation of various carboxylic acids via electrodialysis", Chem. Eng. J., 477, 146765 (2023). 
  25. M. B. McDonald and M. S. Freund, "Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer", ACS Appl. Mater. Interfaces, 6, 13790 (2014). 
  26. Y. Liu, J. Chen, R. Chen, T. Zhou, C. Ke, and X. Chen, "Effects of multi-walled carbon nanotubes on bipolar membrane properties", Mater. Chem. Phys., 203, 259 (2018). 
  27. M. B. McDonald, M. S. Freund, and P. T. Hammond, "Catalytic, conductive bipolar membrane interfaces through layer-by-layer deposition for the design of membrane-integrated artificial photosynthesis systems", ChemSusChem., 10, 4599 (2017). 
  28. J. M. Ahlfield, L. Liu, and P. A. Kohl, "PEM/AEM junction design for bipolar membrane fuel cells", J. Electrochem. Soc., 164, F1165 (2017). 
  29. M. S. Kang, Y. J. Choi, H. J. Lee, and S. H. Moon, "Effects of inorganic substances on water splitting in ion-exchange membranes: I. Electrochemical characteristics of ion-exchange membranes coated with iron hydroxide/oxide and silica sol", J. Colloid. Interface Sci., 273, 523 (2004). 
  30. E. Lucas, J. C. Bui, M. Hwang, K. Wang, A. T. Bell, A. Z. Weber, S. Ardo, H. A. Atwater, and C. Xiang, "Asymmetric bipolar membrane for high current density electrodialysis operation with exceptional stability", ChemRxiv, DOI:10.26434/che mrxiv-2023-n4c6x. 
  31. S. Z. Oener, M. J. Foster, and S. W. Boettcher, "Accelerating water dissociation in bipolar membranes and for electrocatalysis", Science, 359, 1099 (2020). 
  32. Y. Cho, K. Kim, J. Ahn, and J. Lee, "A study on lithium hydroxide recovery using bipolar membrane electrodialysis", J. Korean Inst. Met. Mater., 59, 223 (2021). 
  33. S. Bunani, K. Yoshizuka, S. Nishihama, M. Arda, and N. Kabay, "Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions", Desalination, 424, 37 (2017). 
  34. J. Kroupa, J. Kincl, and J. Cakl, "Recovery of H2SO4 and NaOH from Na2SO4 by electrodialysis with heterogeneous bipolar membrane", Desalination Water Treat., 56, 3238 (2015). 
  35. Kuldeep, W. D. Badenhorst, P. Kauranen, H. Pajari, R. Ruismaki, P. Mannela, and L. Murtomaki, "Bipolar membrane electrodialysis for sulfate recycling in the metallurgical industries", Membranes, 11, 718 (2021). 
  36. M. Zhu, B. Tian, S. Luo, Y. Chi, D. Aishajiang, Y. Zhang, and M. Yang, "High-value conversion of waste Na2SO4 by a bipolar membrane electrodialysis metathesis system", Resour. Conserv. Recycl., 186, 106556 (2022). 
  37. O. S. L. Bruinsma, D. J. Branken, T. N. Lemmer, L. van der Westhuizen, and S. Rossouw, "Sodium sulfate splitting as zero brine process in a base metal refinery: Screening and optimization in batch mode", Desalination, 511, 115096 (2021). 
  38. D. A. Vermaas and W. A. Smith, "Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane", ACS Energy Lett., 1, 1143 (2016). 
  39. Y. Jeon, V. D. C. Tinh, V. D. Thuc, and D. Kim, "Ether-free polymer based bipolar electrolyte membranes without an interlayer catalyst for water electrolysis with durability at a high current density", Chem. Eng. J., 459, 141467 (2023). 
  40. M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek, and S. Gorgieva, "Alkaline membrane fuel cells: anion exchange membranes and fuels", Sustain. Energy Fuels, 5, 604 (2021). 
  41. I. Belhaj, M. Faria, B. Sljukic, V. Geraldes, and D. M. F. Santos, "Bipolar membranes for direct borohydride fuel cells-A review", Membranes, 13, 730 (2023). 
  42. D. Seeberger, A. Hartert, B. Mayerhofer, and S. Thiele, "Bipolar-interface hydrogen fuel cells: A review and perspective on future high-performance, low platinum-group metal content designs", ChemElectroChem., 8, 1430 (2021). 
  43. Z. Yan, R. J. Wycisk, A. S. Metlay, L. Xiao, Y. Yoon, P. N. Pintauro, and T. E. Mallouk, "High-voltage aqueous redox flow batteries enabled by catalyzed water dissociation and acid-base neutralization in bipolar membranes", ACS Cent. Sci., 7, 1028 (2021).