Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.6.204

Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers  

Kim, Dong Young (Department of Physics, Andong National University)
Abstract
We measure the ferromagnetic resonance signals in order to analyze the exchange coupling energy due to the uncompensated antiferromagnetic spins in exchange coupled CoFe/MnIr bilayers. The exchange bias fields ($H_{ex}$) and rotatable anisotropy fields ($H_{ra}$) are obtained from the ferromagnetic resonance fields measured with in-plane angle in thermal annealed samples with $t_{AF}$= 0, 3, and 10 nm. The sum of the $H_{ex}$ and $H_{ra}$ do not depend on the MnIr thickness, which means that all the uncompensated AF spins are aligned to one direction in $300^{\circ}C$ annealed samples. Therefore, the uncompensated AF spins are divided into two different parts. One parts are fixed at the interface between CoFe/MnIr bilayers and induces the $H_{ex}$, other parts are rotatable with magnetic field and induces the $H_{ra}$. Finally, the exchange coupling energy can be expressed by the sum of the exchange bias energy and rotatable anisotropy energy.
Keywords
exchange bias field; rotatable anisotropy field; exchange coupling energy; ferromagnetic resonance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 2489 (1989).
2 S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).   DOI   ScienceOn
3 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).   DOI   ScienceOn
4 T. Q. Hung, S. Oh, B. Sinha, J. R. Jeong, D. Y. Kim, and C. G. Kim, J. Appl. Phys. 107, 09E715 (2010).   DOI   ScienceOn
5 T. Q. Hung, S. Oh, S. Anandakumar, J. R. Jeong, D. Y. Kim, and C. G. Kim, IEEE Trans. Magn. 45, 4518 (2009).   DOI   ScienceOn
6 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).   DOI
7 W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).   DOI
8 K. I. Imakita, M. Tsunoda, and M. Takahashi, Appl. Phys. Lett. 85, 3182 (2004).
9 M. Tsunoda, T. Sato, T. Hashimoto, and M. Takahashi, Appl. Phys. Lett. 84, 5222 (2004).   DOI   ScienceOn
10 R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Phys, Rev. B 58, 8605 (1998).   DOI
11 J. Geshev, L. G. Pereira, and J. E. Schmidt, Phys, Rev. B 66, 134432 (2002).   DOI   ScienceOn
12 L. Wee, R. L. Stamps, L. Malkinskil, and Z. Celinski, Phys. Rev. B 69, 134426 (2004).   DOI
13 M. Ali, C. H. Marrows, M. Al-Jawad, B. J. Hickey, A. Misra, U. Nowak, and K. D. Usadel, Phys. Rev. B 68, 214420 (2003).   DOI   ScienceOn
14 T. Sato, M. Tsunoda, and M. Takahashi, J. Appl. Phys. 95, 7513 (2004).   DOI   ScienceOn
15 D. Y. Kim, S. S. Yoon, C. G. Kim, M. Tsunoda, and M. Takahashi, IEEE Trans. Magn. 45, 3865 (2009).   DOI   ScienceOn
16 S. Yuan, K. Xu, L. Yu, S. X. Cao, C. Jing, and J. C. Zhang, J. Appl. Phys. 101, 113915 (2007).   DOI   ScienceOn
17 S. Yuan, B. Kang, L. Yu, S. Cao, and X. Zhao, J. Appl. Phys. 105, 063902 (2009).   DOI   ScienceOn
18 S. Chikazumi, Physics of Magnetism, Wiley, New York (1964) p. 51.
19 J. H. Lee, H. D. Jeong, C. S. Yoon, C. K. Kim, B. G. Park, and T. D. Lee, J. Appl. Phys. 91, 1431 (2002).   DOI   ScienceOn